59 research outputs found
Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein.
BACKGROUND:
Lactic acid bacteria of the genus Lactobacillus and Bifidobacterium are one of the most important health promoting groups of the human intestinal microbiota. Their protective role within the gut consists in out competing invading pathogens for ecological niches and metabolic substrates. Among the features necessary to provide health benefits, commensal microorganisms must have the ability to adhere to human intestinal cells and consequently to colonize the gut. Studies on mechanisms mediating adhesion of lactobacilli to human intestinal cells showed that factors involved in the interaction vary mostly among different species and strains, mainly regarding interaction between bacterial adhesins and extracellular matrix or mucus proteins. We have investigated the adhesive properties of Lactobacillus plantarum, a member of the human microbiota of healthy individuals.
RESULTS:
We show the identification of a Lactobacillus plantarum LM3 cell surface protein (48 kDa), which specifically binds to human fibronectin (Fn), an extracellular matrix protein. By means of mass spectrometric analysis this protein was identified as the product of the L. plantarum enoA1 gene, coding the EnoA1 alfa-enolase. Surface localization of EnoA1 was proved by immune electron microscopy. In the mutant strain LM3-CC1, carrying the enoA1 null mutation, the 48 kDa adhesin was not anymore detectable neither by anti-enolase Western blot nor by Fn-overlay immunoblotting assay. Moreover, by an adhesion assay we show that LM3-CC1 cells bind to fibronectin-coated surfaces less efficiently than wild type cells, thus demonstrating the significance of the surface displaced EnoA1 protein for the L. plantarum LM3 adhesion to fibronectin.
CONCLUSION:
Adhesion to host tissues represents a crucial early step in the colonization process of either pathogens or commensal bacteria. We demonstrated the involvement of the L. plantarum Eno A1 alfa-enolase in Fn-binding, by studying LM3 and LM3-CC1 surface proteins. Isolation of LM3-CC1 strain was possible for the presence of expressed enoA2 gene in the L. plantarum genome, giving the possibility, for the first time to our knowledge, to quantitatively compare adhesion of wild type and mutant strain, and to assess doubtless the role of L. plantarum Eno A1 as a fibronectin binding protein
Theory and computation of covariant Lyapunov vectors
Lyapunov exponents are well-known characteristic numbers that describe growth
rates of perturbations applied to a trajectory of a dynamical system in
different state space directions. Covariant (or characteristic) Lyapunov
vectors indicate these directions. Though the concept of these vectors has been
known for a long time, they became practically computable only recently due to
algorithms suggested by Ginelli et al. [Phys. Rev. Lett. 99, 2007, 130601] and
by Wolfe and Samelson [Tellus 59A, 2007, 355]. In view of the great interest in
covariant Lyapunov vectors and their wide range of potential applications, in
this article we summarize the available information related to Lyapunov vectors
and provide a detailed explanation of both the theoretical basics and numerical
algorithms. We introduce the notion of adjoint covariant Lyapunov vectors. The
angles between these vectors and the original covariant vectors are
norm-independent and can be considered as characteristic numbers. Moreover, we
present and study in detail an improved approach for computing covariant
Lyapunov vectors. Also we describe, how one can test for hyperbolicity of
chaotic dynamics without explicitly computing covariant vectors.Comment: 21 pages, 5 figure
Lyapunov spectral analysis of a nonequilibrium Ising-like transition
By simulating a nonequilibrium coupled map lattice that undergoes an
Ising-like phase transition, we show that the Lyapunov spectrum and related
dynamical quantities such as the dimension correlation length~ are
insensitive to the onset of long-range ferromagnetic order. As a function of
lattice coupling constant~ and for certain lattice maps, the Lyapunov
dimension density and other dynamical order parameters go through a minimum.
The occurrence of this minimum as a function of~ depends on the number of
nearest neighbors of a lattice point but not on the lattice symmetry, on the
lattice dimensionality or on the position of the Ising-like transition. In
one-space dimension, the spatial correlation length associated with magnitude
fluctuations and the length~ are approximately equal, with both
varying linearly with the radius of the lattice coupling.Comment: 29 pages of text plus 15 figures, uses REVTeX macros. Submitted to
Phys. Rev. E
Resveratrol and Cancer: Focus on in vivo Evidence
Resveratrol is a naturally occurring polyphenol that provides a number of anti-aging health benefits including improved metabolism, cardioprotection, and cancer prevention. Much of the work on resveratrol and cancer comes from in vitro studies looking at resveratrol actions on cancer cells and pathways. There are, however, comparatively fewer studies that have investigated resveratrol treatment and cancer outcomes in vivo, perhaps limited by its poor bioavailability when taken orally. Although research in cell culture has shown promising and positive effects of resveratrol, evidence from rodents and humans is inconsistent. This review highlights the in vivo effects of resveratrol treatment on breast, colorectal, liver, pancreatic, and prostate cancers. Resveratrol supplementation in animal models of cancer has shown positive, neutral as well as negative outcomes depending on resveratrol route of administration, dose, tumor model, species, and other factors. Within a specific cancer type, there is variability between studies with respect to strain, age, and sex of animal used, timing and method of resveratrol supplementation, and dose of resveratrol used to study cancer endpoints. Together, the data suggest that many factors need to be considered before resveratrol can be used for human cancer prevention or therapy
Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium
Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These “memory” effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and estimate the capacity of these systems and growth dynamics to ‘remember’ 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy
Expression of the Lactobacillus plantarum malE gene is regulated by CcpA and a MalR-like protein
Lactobacillus plantarum is commonly used in the food industry as a starter in various fermentations, especially in vegetable fermentations, in which starch is a common substrate. This polysaccharide, which is obtained from potatoes or corn and is hydrolysed mainly to maltose and glucose by acids or enzymes, is commercially used for the production of lactate by lactic acid fermentation. In this study, we describe the regulation of malE gene expression in L. plantarum. This gene, located in a 7-gene cluster, probably organized in an operon, encodes a putative maltose/maltodextrin-binding protein. We studied the expression of malE in L. plantarum LM3 (wild type) and in LM3-2 (ccpA1), which carries a null mutation in the ccpA gene, encoding the catabolite control protein A (CcpA). In the presence of glucose, expression of the MalE protein was higher in the mutant strain as compared to that in the wild-type strain. Transcription of the malE gene was induced by maltose and regulated by a CcpA-mediated carbon catabolite repression. Further, we isolated strains carrying mutations in 2 genes, lp_0172 and lp_0173, whose deduced amino acid sequences share significant identity with MalR, a regulator of the maltose operon in several gram-positive bacteria. A double mutant exhibited glucose-insensitive malE transcription, while absence of the functional Lp_0172 open reading frame had no effect on malE expression. © 2011 The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg
- …