5 research outputs found

    Critical properties of joint spin and Fortuin-Kasteleyn observables in the two-dimensional Potts model

    Full text link
    The two-dimensional Potts model can be studied either in terms of the original Q-component spins, or in the geometrical reformulation via Fortuin-Kasteleyn (FK) clusters. While the FK representation makes sense for arbitrary real values of Q by construction, it was only shown very recently that the spin representation can be promoted to the same level of generality. In this paper we show how to define the Potts model in terms of observables that simultaneously keep track of the spin and FK degrees of freedom. This is first done algebraically in terms of a transfer matrix that couples three different representations of a partition algebra. Using this, one can study correlation functions involving any given number of propagating spin clusters with prescribed colours, each of which contains any given number of distinct FK clusters. For 0 <= Q <= 4 the corresponding critical exponents are all of the Kac form h_{r,s}, with integer indices r,s that we determine exactly both in the bulk and in the boundary versions of the problem. In particular, we find that the set of points where an FK cluster touches the hull of its surrounding spin cluster has fractal dimension d_{2,1} = 2 - 2 h_{2,1}. If one constrains this set to points where the neighbouring spin cluster extends to infinity, we show that the dimension becomes d_{1,3} = 2 - 2 h_{1,3}. Our results are supported by extensive transfer matrix and Monte Carlo computations.Comment: 15 pages, 3 figures, 2 table

    Logarithmic observables in critical percolation

    Full text link
    Although it has long been known that the proper quantum field theory description of critical percolation involves a logarithmic conformal field theory (LCFT), no direct consequence of this has been observed so far. Representing critical bond percolation as the Q = 1 limit of the Q-state Potts model, and analyzing the underlying S_Q symmetry of the Potts spins, we identify a class of simple observables whose two-point functions scale logarithmically for Q = 1. The logarithm originates from the mixing of the energy operator with a logarithmic partner that we identify as the field that creates two propagating clusters. In d=2 dimensions this agrees with general LCFT results, and in particular the universal prefactor of the logarithm can be computed exactly. We confirm its numerical value by extensive Monte-Carlo simulations.Comment: 11 pages, 2 figures. V2: as publishe
    corecore