32 research outputs found

    Cross-Neutralizing Antibodies to Pandemic 2009 H1N1 and Recent Seasonal H1N1 Influenza A Strains Influenced by a Mutation in Hemagglutinin Subunit 2

    Get PDF
    Pandemic 2009 H1N1 influenza A virus (2009 H1N1) differs from H1N1 strains that circulated in the past 50 years, but resembles the A/New Jersey/1976 H1N1 strain used in the 1976 swine influenza vaccine. We investigated whether sera from persons immunized with the 1976 swine influenza or recent seasonal influenza vaccines, or both, neutralize 2009 H1N1. Using retroviral pseudovirions bearing hemagglutinins on their surface (HA-pseudotypes), we found that 77% of the sera collected in 1976 after immunization with the A/New Jersey/1976 H1N1 swine influenza vaccine neutralized 2009 H1N1. Forty five percent also neutralized A/New Caledonia/20/1999 H1N1, a strain used in seasonal influenza vaccines during the 2000/01–2006/07 seasons. Among adults aged 48–64 who received the swine influenza vaccine in 1976 and recent seasonal influenza vaccines during the 2004/05–2008/09 seasons, 83% had sera that neutralized 2009 H1N1. However, 68% of age-matched subjects who received the same seasonal influenza vaccines, but did not receive the 1976 swine influenza vaccine, also had sera that neutralized 2009 H1N1. Sera from both 1976 and contemporary cohorts frequently had cross-neutralizing antibodies to 2009 H1N1 and A/New Caledonia/20/1999 that mapped to hemagglutinin subunit 2 (HA2). A conservative mutation in HA2 corresponding to a residue in the A/Solomon Islands/3/2006 and A/Brisbane/59/2007 H1N1 strains that circulated in the 2006/07 and 2007/08 influenza seasons, respectively, abrogated this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in HA2 and suggest that HA2 may be evolving under direct or indirect immune pressure

    The trispecific DARPin ensovibep inhibits diverse SARS-CoV-2 variants

    Get PDF
    The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19)

    Binding of the 2F5 Monoclonal Antibody to Native and Fusion-Intermediate Forms of Human Immunodeficiency Virus Type 1 gp41: Implications for Fusion-Inducing Conformational Changes

    No full text
    We investigated how the broadly neutralizing monoclonal antibody 2F5 affects the human immunodeficiency virus type 1 envelope glycoprotein as it undergoes receptor-induced conformational changes and show that 2F5 binds both native and fusion-intermediate conformations, suggesting inhibition of a late step in virus entry. We also demonstrate conformational changes in the C heptad of gp41

    HIV Escape From Peptide Fusion Inhibitors

    No full text

    Glycosylation of Residue 141 of Subtype H7 Influenza A Hemagglutinin (HA) Affects HA-Pseudovirus Infectivity and Sensitivity to Site A Neutralizing Antibodies.

    No full text
    Human infections with H7 subtype influenza virus have been reported, including an H7N7 outbreak in Netherlands in 2003 and H7N9 infections in China in 2013. Previously, we reported murine monoclonal antibodies (mAbs) that recognize the antigenic site A of H7 hemagglutinin (HA). To better understand protective immunity of H7 vaccines and vaccine candidate selection, we used these mAbs to assess the antigenic relatedness among two H7 HA isolated from past human infections and determine residues that affect susceptibility to neutralization. We found that these mAbs neutralize pseudoviruses bearing HA of A/Shanghai/02/2013(H7N9), but not A/Netherlands/219/2003(H7N7). Glycosylation of the asparagine residue at position 141 (N141) (N133, H3 HA numbering) in the HA of A/Netherlands/219/2003 HA is responsible for this resistance, and it affects the infectivity of HA-pseudoviruses. The presence of threonine at position 143 (T135, H3 HA numbering) in the HA of A/Netherlands/219/2003, rather than an alanine found in the HA of A/Shanghai/02/2013(H7N9), accounts for these differences. These results demonstrate a key role for glycosylation of residue N141 in affecting H7 influenza HA-mediated entry and sensitivity to neutralizing antibodies, which have implications for candidate vaccine design

    Peptides Trap the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Fusion Intermediate at Two Sites

    No full text
    Human immunodeficiency virus type 1 (HIV-1) entry into target cells requires folding of two heptad-repeat regions (N-HR and C-HR) of gp41 into a trimer of N-HR and C-HR hairpins, which brings viral and target cell membranes together to facilitate membrane fusion. Peptides corresponding to the N-HR and C-HR of gp41 are potent inhibitors of HIV infection. Here we report new findings on the mechanism of inhibition of a N-HR peptide and compare these data with inhibition by a C-HR peptide. Using intact envelope glycoprotein (Env) under fusogenic conditions, we show that the N-HR peptide preferentially binds receptor-activated Env and that CD4 binding is sufficient for triggering conformational changes that allow the peptide to bind Env, results similar to those seen with the C-HR peptide. However, activation by both CD4 and chemokine receptors further enhances Env binding by both peptides. We also show that a nonconservative mutation in the N-HR of gp41 abolishes C-HR peptide but not N-HR peptide binding to gp41. These results indicate that there are two distinct sites in receptor-activated Env that are potential targets for drug or vaccine development
    corecore