5,764 research outputs found

    Resonant Interactions Between Protons and Oblique Alfv\'en/Ion-Cyclotron Waves

    Full text link
    Resonant interactions between ions and Alfv\'en/ion-cyclotron (A/IC) waves may play an important role in the heating and acceleration of the fast solar wind. Although such interactions have been studied extensively for "parallel" waves, whose wave vectors k{\bf k} are aligned with the background magnetic field B0{\bf B}_0, much less is known about interactions between ions and oblique A/IC waves, for which the angle θ\theta between k{\bf k} and B0{\bf B}_0 is nonzero. In this paper, we present new numerical results on resonant cyclotron interactions between protons and oblique A/IC waves in collisionless low-beta plasmas such as the solar corona. We find that if some mechanism generates oblique high-frequency A/IC waves, then these waves initially modify the proton distribution function in such a way that it becomes unstable to parallel waves. Parallel waves are then amplified to the point that they dominate the wave energy at the large parallel wave numbers at which the waves resonate with the particles. Pitch-angle scattering by these waves then causes the plasma to evolve towards a state in which the proton distribution is constant along a particular set of nested "scattering surfaces" in velocity space, whose shapes have been calculated previously. As the distribution function approaches this state, the imaginary part of the frequency of parallel A/IC waves drops continuously towards zero, but oblique waves continue to undergo cyclotron damping while simultaneously causing protons to diffuse across these kinetic shells to higher energies. We conclude that oblique A/IC waves can be more effective at heating protons than parallel A/IC waves, because for oblique waves the plasma does not relax towards a state in which proton damping of oblique A/IC waves ceases

    Molecular gas associated with IRAS 10361-5830

    Get PDF
    We analyze the distribution of the molecular gas and the dust in the molecular clump linked to IRAS 10361-5830, located in the environs of the bubble-shaped HII region Gum 31 in the Carina region, with the aim of determining the main parameters of the associated material and investigating the evolutionary state of the young stellar objects identified there. Using the APEX telescope, we mapped the molecular emission in the J=3-2 transition of three CO isotopologues, 12CO, 13CO and C18O, over a 1.5' x 1.5' region around the IRAS position. We also observed the high density tracers CS and HCO+ toward the source. The cold dust distribution was analyzed using submillimeter continuum data at 870 \mu\ obtained with the APEX telescope. Complementary IR and radio data at different wavelengths were used to complete the study of the ISM. The molecular gas distribution reveals a cavity and a shell-like structure of ~ 0.32 pc in radius centered at the position of the IRAS source, with some young stellar objects (YSOs) projected onto the cavity. The total molecular mass in the shell and the mean H2_2 volume density are ~ 40 solar masses and ~(1-2) x 103^3 cm−3^{-3}, respectively. The cold dust counterpart of the molecular shell has been detected in the far-IR at 870 \mu\ and in Herschel data at 350 \mu. Weak extended emission at 24 \mu\ from warm dust is projected onto the cavity, as well as weak radio continuum emission. A comparison of the distribution of cold and warm dust, and molecular and ionized gas allows us to conclude that a compact HII region has developed in the molecular clump, indicating that this is an area of recent massive star formation. Probable exciting sources capable of creating the compact HII region are investigated. The 2MASS source 10380461-5846233 (MSX G286.3773-00.2563) seems to be responsible for the formation of the HII region.Comment: Accepted in A&A. 11 pages, 10 Postscript figure

    Effects of lattice distortion and Jahn–Teller coupling on the magnetoresistance of La0.7Ca0.3MnO3 and La0.5Ca0.5CoO3 epitaxial films

    Get PDF
    Studies of La0.7Ca0.3MnO3 epitaxial films on substrates with a range of lattice constants reveal two dominant contributions to the occurrence of colossal negative magnetoresistance (CMR) in these manganites: at high temperatures (T → TC, TC being the Curie temperature), the magnetotransport properties are predominantly determined by the conduction of lattice polarons, while at low temperatures (T ≪ TC/, the residual negative magnetoresistance is correlated with the substrate-induced lattice distortion which incurs excess magnetic domain wall scattering. The importance of lattice polaron conduction associated with the presence of Jahn–Teller coupling in the manganites is further verified by comparing the manganites with epitaxial films of another ferromagnetic perovskite, La0.5Ca0.5CoO3. Regardless of the differences in the substrate-induced lattice distortion, the cobaltite films exhibit much smaller negative magnetoresistance, which may be attributed to the absence of Jahn–Teller coupling and the high electron mobility that prevents the formation of lattice polarons. We therefore suggest that lattice polaron conduction associated with the Jahn–Teller coupling is essential for the occurrence of CMR, and that lattice distortion further enhances the CMR effects in the manganites

    Source amplitudes for active exterior cloaking

    Full text link
    The active cloak comprises a discrete set of multipole sources that destructively interfere with an incident time harmonic scalar wave to produce zero total field over a finite spatial region. For a given number of sources and their positions in two dimensions it is shown that the multipole amplitudes can be expressed as infinite sums of the coefficients of the incident wave decomposed into regular Bessel functions. The field generated by the active sources vanishes in the infinite region exterior to a set of circles defined by the relative positions of the sources. The results provide a direct solution to the inverse problem of determining the source amplitudes. They also define a broad class of non-radiating discrete sources.Comment: 21 pages, 17 figure

    Dissipative Dynamics of Collisionless Nonlinear Alfven Wave Trains

    Full text link
    The nonlinear dynamics of collisionless Alfven trains, including resonant particle effects is studied using the kinetic nonlinear Schroedinger (KNLS) equation model. Numerical solutions of the KNLS reveal the dynamics of Alfven waves to be sensitive to the sense of polarization as well as the angle of propagation with respect to the ambient magnetic field. The combined effects of both wave nonlinearity and Landau damping result in the evolutionary formation of stationaryOA S- and arc-polarized directional and rotational discontinuities. These waveforms are freqently observed in the interplanetary plasma.Comment: REVTeX, 6 pages (including 5 figures). This and other papers may be found at http://sdphpd.ucsd.edu/~medvedev/papers.htm

    Convective Fingering of an Autocatalytic Reaction Front

    Full text link
    We report experimental observations of the convection-driven fingering instability of an iodate-arsenous acid chemical reaction front. The front propagated upward in a vertical slab; the thickness of the slab was varied to control the degree of instability. We observed the onset and subsequent nonlinear evolution of the fingers, which were made visible by a {\it p}H indicator. We measured the spacing of the fingers during their initial stages and compared this to the wavelength of the fastest growing linear mode predicted by the stability analysis of Huang {\it et. al.} [{\it Phys. Rev. E}, {\bf 48}, 4378 (1993), and unpublished]. We find agreement with the thickness dependence predicted by the theory.Comment: 11 pages, RevTex with 3 eps figures. To be published in Phys Rev E, [email protected], [email protected], [email protected]

    How light can the lightest neutralino be?

    Full text link
    In this talk we summarize previous work on mass bounds of a light neutralino in the Minimal Supersymmetric Standard Model. We show that without the GUT relation between the gaugino mass parameters M_1 and M_2, the mass of the lightest neutralino is essentially unconstrained by collider bounds and precision observables. We conclude by considering also the astrophysics and cosmology of a light neutralino.Comment: 6 pages, 3 figures, to appear in the proceedings of the 16th International Symposium on Particles, Strings and Cosmology (PASCOS2010), Valencia (Spain), July 19th - 23rd, 201

    Effective gravity from a quantum gauge theory in Euclidean space-time

    Full text link
    We consider a SO(d)SO(d) gauge theory in an Euclidean dd-dimensional space-time, which is known to be renormalizable to all orders in perturbation theory for 2≤d≤42\le{d}\le4. Then, with the help of a space-time representation of the gauge group, the gauge theory is mapped into a curved space-time with linear connection. Further, in that mapping the gauge field plays the role of the linear connection of the curved space-time and an effective metric tensor arises naturally from the mapping. The obtained action, being quadratic in the Riemann-Christoffel tensor, at a first sight, spoils a gravity interpretation of the model. Thus, we provide a sketch of a mechanism that breaks the SO(d)SO(d) color invariance and generates the Einstein-Hilbert term, as well as a cosmological constant term, allowing an interpretation of the model as a modified gravity in the Palatini formalism. In that sense, gravity can be visualized as an effective classical theory, originated from a well defined quantum gauge theory. We also show that, in the four dimensional case, two possibilities for particular solutions of the field equations are the de Sitter and Anti de Sitter space-times.Comment: 20 pages; Final version accepted for publication in Class.Quant.Gra

    Loop-induced photon spectral lines from neutralino annihilation in the NMSSM

    Full text link
    We have computed the loop-induced processes of neutralino annihilation into two photons and, for the first time, into a photon and a Z boson in the framework of the NMSSM. The photons produced from these radiative modes are monochromatic and possess a clear "smoking gun" experimental signature. This numerical analysis has been done with the help of the SloopS code, initially developed for automatic one-loop calculation in the MSSM. We have computed the rates for different benchmark points coming from SUGRA and GMSB soft SUSY breaking scenarios and compared them with the MSSM. We comment on how this signal can be enhanced, with respect to the MSSM, especially in the low mass region of the neutralino. We also discuss the possibility of this observable to constrain the NMSSM parameter space, taking into account the latest limits from the FERMI collaboration on these two modes.Comment: 18 pages, 3 figures. Minor clarifications added in the text. Typing mistakes and references corrected. Matches published versio

    Thirty Meter Telescope Site Testing I: Overview

    Get PDF
    As part of the conceptual and preliminary design processes of the Thirty Meter Telescope (TMT), the TMT site testing team has spent the last five years measuring the atmospheric properties of five candidate mountains in North and South America with an unprecedented array of instrumentation. The site testing period was preceded by several years of analyses selecting the five candidates, Cerros Tolar, Armazones and Tolonchar in northern Chile; San Pedro Martir in Baja California, Mexico and the 13 North (13N) site on Mauna Kea, Hawaii. Site testing was concluded by the selection of two remaining sites for further consideration, Armazones and Mauna Kea 13N. It showed that all five candidates are excellent sites for an extremely large astronomical observatory and that none of the sites stands out as the obvious and only logical choice based on its combined properties. This is the first article in a series discussing the TMT site testing project.Comment: Accepted for publication in PASP, April 2009 issu
    • …
    corecore