5,537 research outputs found
Source amplitudes for active exterior cloaking
The active cloak comprises a discrete set of multipole sources that
destructively interfere with an incident time harmonic scalar wave to produce
zero total field over a finite spatial region. For a given number of sources
and their positions in two dimensions it is shown that the multipole amplitudes
can be expressed as infinite sums of the coefficients of the incident wave
decomposed into regular Bessel functions. The field generated by the active
sources vanishes in the infinite region exterior to a set of circles defined by
the relative positions of the sources. The results provide a direct solution to
the inverse problem of determining the source amplitudes. They also define a
broad class of non-radiating discrete sources.Comment: 21 pages, 17 figure
Hyperelastic cloaking theory: Transformation elasticity with pre-stressed solids
Transformation elasticity, by analogy with transformation acoustics and
optics, converts material domains without altering wave properties, thereby
enabling cloaking and related effects. By noting the similarity between
transformation elasticity and the theory of incremental motion superimposed on
finite pre-strain it is shown that the constitutive parameters of
transformation elasticity correspond to the density and moduli of
small-on-large theory. The formal equivalence indicates that transformation
elasticity can be achieved by selecting a particular finite (hyperelastic)
strain energy function, which for isotropic elasticity is semilinear strain
energy. The associated elastic transformation is restricted by the requirement
of statically equilibrated pre-stress. This constraint can be cast as \tr
{\mathbf F} = constant, where is the deformation gradient,
subject to symmetry constraints, and its consequences are explored both
analytically and through numerical examples of cloaking of anti-plane and
in-plane wave motion.Comment: 20 pages, 5 figure
Effective gravity from a quantum gauge theory in Euclidean space-time
We consider a gauge theory in an Euclidean -dimensional
space-time, which is known to be renormalizable to all orders in perturbation
theory for . Then, with the help of a space-time representation of
the gauge group, the gauge theory is mapped into a curved space-time with
linear connection. Further, in that mapping the gauge field plays the role of
the linear connection of the curved space-time and an effective metric tensor
arises naturally from the mapping. The obtained action, being quadratic in the
Riemann-Christoffel tensor, at a first sight, spoils a gravity interpretation
of the model. Thus, we provide a sketch of a mechanism that breaks the
color invariance and generates the Einstein-Hilbert term, as well as a
cosmological constant term, allowing an interpretation of the model as a
modified gravity in the Palatini formalism. In that sense, gravity can be
visualized as an effective classical theory, originated from a well defined
quantum gauge theory. We also show that, in the four dimensional case, two
possibilities for particular solutions of the field equations are the de Sitter
and Anti de Sitter space-times.Comment: 20 pages; Final version accepted for publication in Class.Quant.Gra
Loop-induced photon spectral lines from neutralino annihilation in the NMSSM
We have computed the loop-induced processes of neutralino annihilation into
two photons and, for the first time, into a photon and a Z boson in the
framework of the NMSSM. The photons produced from these radiative modes are
monochromatic and possess a clear "smoking gun" experimental signature. This
numerical analysis has been done with the help of the SloopS code, initially
developed for automatic one-loop calculation in the MSSM. We have computed the
rates for different benchmark points coming from SUGRA and GMSB soft SUSY
breaking scenarios and compared them with the MSSM. We comment on how this
signal can be enhanced, with respect to the MSSM, especially in the low mass
region of the neutralino. We also discuss the possibility of this observable to
constrain the NMSSM parameter space, taking into account the latest limits from
the FERMI collaboration on these two modes.Comment: 18 pages, 3 figures. Minor clarifications added in the text. Typing
mistakes and references corrected. Matches published versio
Transformation elastodynamics and active exterior acoustic cloaking
This chapter consists of three parts. In the first part we recall the
elastodynamic equations under coordinate transformations. The idea is to use
coordinate transformations to manipulate waves propagating in an elastic
material. Then we study the effect of transformations on a mass-spring network
model. The transformed networks can be realized with "torque springs", which
are introduced here and are springs with a force proportional to the
displacement in a direction other than the direction of the spring terminals.
Possible homogenizations of the transformed networks are presented, with
potential applications to cloaking. In the second and third parts we present
cloaking methods that are based on cancelling an incident field using active
devices which are exterior to the cloaked region and that do not generate
significant fields far away from the devices. In the second part, the exterior
cloaking problem for the Laplace equation is reformulated as the problem of
polynomial approximation of analytic functions. An explicit solution is given
that allows to cloak larger objects at a fixed distance from the cloaking
device, compared to previous explicit solutions. In the third part we consider
the active exterior cloaking problem for the Helmholtz equation in 3D. Our
method uses the Green's formula and an addition theorem for spherical outgoing
waves to design devices that mimic the effect of the single and double layer
potentials in Green's formula.Comment: Submitted as a chapter for the volume "Acoustic metamaterials:
Negative refraction, imaging, lensing and cloaking", Craster and Guenneau
ed., Springe
Enhancement of near-cloaking. Part II: the Helmholtz equation
The aim of this paper is to extend the method of improving cloaking
structures in the conductivity to scattering problems. We construct very
effective near-cloaking structures for the scattering problem at a fixed
frequency. These new structures are, before using the transformation optics,
layered structures and are designed so that their first scattering coefficients
vanish. Inside the cloaking region, any target has near-zero scattering cross
section for a band of frequencies. We analytically show that our new
construction significantly enhances the cloaking effect for the Helmholtz
equation.Comment: 16pages, 12 fugure
Convective Fingering of an Autocatalytic Reaction Front
We report experimental observations of the convection-driven fingering
instability of an iodate-arsenous acid chemical reaction front. The front
propagated upward in a vertical slab; the thickness of the slab was varied to
control the degree of instability. We observed the onset and subsequent
nonlinear evolution of the fingers, which were made visible by a {\it p}H
indicator. We measured the spacing of the fingers during their initial stages
and compared this to the wavelength of the fastest growing linear mode
predicted by the stability analysis of Huang {\it et. al.} [{\it Phys. Rev. E},
{\bf 48}, 4378 (1993), and unpublished]. We find agreement with the thickness
dependence predicted by the theory.Comment: 11 pages, RevTex with 3 eps figures. To be published in Phys Rev E,
[email protected], [email protected], [email protected]
Unsupervised correspondence with combined geometric learning and imaging for radiotherapy applications
The aim of this study was to develop a model to accurately identify
corresponding points between organ segmentations of different patients for
radiotherapy applications. A model for simultaneous correspondence and
interpolation estimation in 3D shapes was trained with head and neck organ
segmentations from planning CT scans. We then extended the original model to
incorporate imaging information using two approaches: 1) extracting features
directly from image patches, and 2) including the mean square error between
patches as part of the loss function. The correspondence and interpolation
performance were evaluated using the geodesic error, chamfer distance and
conformal distortion metrics, as well as distances between anatomical
landmarks. Each of the models produced significantly better correspondences
than the baseline non-rigid registration approach. The original model performed
similarly to the model with direct inclusion of image features. The best
performing model configuration incorporated imaging information as part of the
loss function which produced more anatomically plausible correspondences. We
will use the best performing model to identify corresponding anatomical points
on organs to improve spatial normalisation, an important step in outcome
modelling, or as an initialisation for anatomically informed registrations. All
our code is publicly available at
https://github.com/rrr-uom-projects/Unsup-RT-Corr-NetComment: Accepted in 3rd Workshop on Shape in Medical Imaging (ShapeMI 2023).
This preprint has not undergone peer review or any post-submission
improvements or correction
Reentry vehicles: evaluation of plasma effects on RF propagation
In the frame of communication technology relevant to the re-entry vehicles, the communication black-out occurring in the presence of plasma is one of the main challenging issues. The re-entry plasma is a complex physical system, where the ionization derives from a shock-wave and non-equilibrium phenomena. As discussed elsewhere, the time scales of plasma dynamics (including its evolution along mission trajectory) and radio wave propagation are well separated so that radio wave propagation is solved at an appropriate number of time "snapshots" in which plasma dynamics is held unchanged and considered as known. In this activity, a consistent effort has been devoted to model the electromagnetic problem. For the involved range of oprative frequencies and expected densities, the plasma can be considered as an inhomogeneous dielectric. The associated electromagnetic problem is solved in two steps, via use of the field equivalence principle. The vehicle-plasma system is substituted by equivalent (Love's) currents on its boundary, radiating in free space; the fields at the boundary are obtained by solving the propagation problem from the antenna, installed on the spacecraft, up to the plasma boundary, through the Eikonal approximation. Radiation is then obtained without further approximations. Unlike other well-known numerical methods (e.g. FEM), this technique is not intrinsecally limited by the electrical dimension of the vehicle-plasma system. This enables to analyze high frequency problems. Since the formation of the re-entry plasma critically depends on the re-entry vehicle shape and kinematics, the related model has been directly derived from the output data of the Computational Fluid Dynamics simulations. All the results of the above mentioned activities have been collected in a new software, the AIPT (Antenna In Plasma Tool, integrated into ADF-EMS Antenna Design Framework Electromagnetic Satellite) able to predict the electromagnetic propagation in the presence of plasma
Efficient Integral Equation Approach for the Modelling of Glide-Symmetric Structures
For the design of advanced microwave and antenna components, efficient and accurate electromagnetic methods are required. In this work, we present a technique to fast simulate mirror- and glide-symmetric periodic structures. More concretely, a novel Green’s function is proposed which allows to reduce the computational domain to one half of the unit cell. Full dispersion diagrams are computed for metallic glide- and mirror-symmetric structures with three stages of mesh refinement. The results converge with the meshing and agree well with conventional eigenmode analyses
- …