296 research outputs found

    Spectral and polarization dependencies of luminescence by hot carriers in graphene

    Full text link
    The luminescence caused by the interband transitions of hot carriers in graphene is considered theoretically. The dependencies of emission in mid- and near-IR spectral regions versus energy and concentration of hot carriers are analyzed; they are determined both by an applied electric field and a gate voltage. The polarization dependency is determined by the angle between the propagation direction and the normal to the graphene sheet. The characteristics of radiation from large-scale-area samples of epitaxial graphene and from microstructures of exfoliated graphene are considered. The averaged over angles efficiency of emission is also presented.Comment: 6 pages, 5 figure

    Least action principle for envelope functions in abrupt heterostructures

    Full text link
    We apply the envelope function approach to abrupt heterostructures starting with the least action principle for the microscopic wave function. The interface is treated nonperturbatively, and our approach is applicable to mismatched heterostructure. We obtain the interface connection rules for the multiband envelope function and the short-range interface terms which consist of two physically distinct contributions. The first one depends only on the structure of the interface, and the second one is completely determined by the bulk parameters. We discover new structure inversion asymmetry terms and new magnetic energy terms important in spintronic applications.Comment: 4 pages, 1 figur

    Transient magnetoconductivity of photoexcited electrons

    Full text link
    Transient magnetotransport of two-dimensional electrons with partially-inverted distribution excited by an ultrashort optical pulse is studied theoretically. The time-dependent photoconductivity is calculated for GaAs-based quantum wells by taking into account the relaxation of electron distribution caused by non-elastic electron-phonon interaction and the retardation of the response due to momentum relaxation and due to a finite capacitance of the sample. We predict large-amplitude transient oscillations of the current density and Hall field (Hall oscillations) with frequencies corresponding to magnetoplasmon range, which are initiated by the instability owing to the absolute negative conductivity effect.Comment: 21 pages, 6 fig

    Thermal-radiation-induced nonequilibrium carriers in an intrinsic graphene

    Full text link
    We examine an intrinsic graphene connected to the phonon thermostat at temperature T under irradiation of thermal photons with temperature T_r, other than T. The distribution of nonequilibrium electron-hole pairs was obtained for the cases of low and high concentration of carriers. For the case when the interparticle scattering is unessential, the distribution function is determined by the interplay of intraband relaxation of energy due to acoustic phonons and interband radiative transitions caused by the thermal radiation. When the Coulomb scattering dominates, then the quasi-equilibrium distribution with effective temperature and non-equilibrium concentration, determined through balance equations, is realized. Due to the effect of thermal radiation with temperature Tr≠TT_r\neq T concentration and conductivity of carriers in graphene modify essentially. It is demonstrated, that at Tr>TT_r>T the negative interband absorption, caused by the inversion of carriers distribution, can occur, i.e. graphene can be unstable under thermal irradiation.Comment: 5 pages, 4 figure

    Frequency dependence of induced spin polarization and spin current in quantum wells

    Full text link
    Dynamic response of two-dimensional electron systems with spin-orbit interaction is studied theoretically on the basis of quantum kinetic equation, taking into account elastic scattering of electrons. The spin polarization and spin current induced by the applied electric field are calculated for the whole class of electron systems described by p-linear spin-orbit Hamiltonians. The absence of nonequilibrium intrinsic static spin currents is confirmed for these systems with arbitrary (nonparabolic) electron energy spectrum. Relations between the spin polarization, spin current, and electric current are established. The general results are applied to the quantum wells grown in [001] and [110] crystallographic directions, with both Rashba and Dresselhaus types of spin-orbit coupling. It is shown that the existence of the fixed (momentum-independent) precession axes in [001]-grown wells with equal Rashba and Dresselhaus spin velocities or in symmetric [110]-grown wells leads to vanishing spin polarizability at arbitrary frequency of the applied electric field. This property is explained by the absence of Dyakonov-Perel-Kachorovskii spin relaxation for the spins polarized along these precession axes. As a result, a considerable frequency dispersion of spin polarization at very low frequency in the vicinity of the fixed precession axes is predicted. Possible effects of extrinsic spin-orbit coupling on the obtained results are discussed.Comment: 14 pages, 6 figures; published with minor corrections in Phys. Rev.

    Electronic states in heterostructures formed by ultranarrow layers

    Full text link
    Low-energy electronic states in heterosrtuctures formed by ultranarrow layer (single or several monolayers thickness) are studied theoretically. The host material is described within the effective mass approximation and effect of ultranarrow layers is taken into account within the framework of the transfer matrix approach. Using the current conservation requirement and the inversion symmetry of ultranarrow layer, the transfer matrix is written through two phenomenological parameters. The binding energy of localized state, the reflection (transmission) coefficient for the single ultranarrow layer case, and the energy spectrum of superlattice are determined by these parameters. Spectral dependency of absorption in superlattice due to photoexcitation of electrons from localized states into minibands is strongly dependent on the ultranarrow layers characteristics. Such a dependency can be used for verification of the transfer matrix parameters.Comment: 7 pages, 7 figure

    Superlattice formed by quantum-dot sheets: density of states and IR absorption

    Full text link
    Low-energy continuous states of electron in heterosrtucture with periodically placed quantum-dot sheets are studied theoretically. The Green's function of electron is governed by the Dyson equation with the self-energy function which is determined the boundary conditions at quantum-dot sheets with weak damping in low-energy region. The parameters of superlattice formed by quantum-dot sheets are determined using of the short-range model of quantum dot. The density of states and spectral dependencies of the anisotropic absorption coefficient under mid-IR transitions from doped quantum dots into miniband states of superlattice strongly depend on dot concentration and on period of sheets. These dependencies can be used for characterization of the multi-layer structure and they determine parameters of different optoelectronic devices exploiting vertical transport of carriers through quantum-dot sheets.Comment: 7 pages and 5 figure

    Transient quantum evolution of 2D electrons under photoexcitation of a deep center

    Full text link
    We have considered the ballistic propagation of the 2D electron Wigner distribution, which is excited by an ultrashort optical pulse from a short-range impurity into the first quantized subband of a selectively-doped heterostructure with high mobility. Transient ionization of a deep local state into a continuum conduction c-band state is described. Since the quantum nature of the photoexcitation, the Wigner distribution over 2D plane appears to be an alternating-sign function. Due to a negative contribution to the Wigner function, the mean values (concentration, energy, and flow) demonstrate an oscillating transient evolution in contrast to the diffusive classical regime of propagation.Comment: 8 pages, 6 figures, pape
    • …
    corecore