2,499 research outputs found
Narrow-escape times for diffusion in microdomains with a particle-surface affinity: Mean-field results
We analyze the mean time t_{app} that a randomly moving particle spends in a
bounded domain (sphere) before it escapes through a small window in the
domain's boundary. A particle is assumed to diffuse freely in the bulk until it
approaches the surface of the domain where it becomes weakly adsorbed, and then
wanders diffusively along the boundary for a random time until it desorbs back
to the bulk, and etc. Using a mean-field approximation, we define t_{app}
analytically as a function of the bulk and surface diffusion coefficients, the
mean time it spends in the bulk between two consecutive arrivals to the surface
and the mean time it wanders on the surface within a single round of the
surface diffusion.Comment: 8 pages, 1 figure, submitted to JC
Ensemble dependence of Critical Casimir Forces in Films with Dirichlet Boundary Conditions
In a recent study [Phys. Rev. E \textbf{94}, 022103 (2016)] it has been shown
that, for a fluid film subject to critical adsorption, the resulting critical
Casimir force (CCF) may significantly depend on the thermodynamic ensemble.
Here, we extend that study by considering fluid films within the so-called
ordinary surface universality class. We focus on mean-field theory, within
which the OP profile satisfies Dirichlet boundary conditions and produces a
nontrivial CCF in the presence of external bulk fields or, respectively, a
nonzero total order parameter within the film. Our analytical results are
supported by Monte Carlo simulations of the three-dimensional Ising model. We
show that, in the canonical ensemble, i.e., when fixing the so-called total
mass within the film, the CCF is typically repulsive instead of attractive as
in the grand canonical ensemble. Based on the Landau-Ginzburg free energy, we
furthermore obtain analytic expressions for the order parameter profiles and
analyze the relation between the total mass in the film and the external bulk
field.Comment: 22 pages, 15 figures. Version 2: minor corrections; added Journal
referenc
Spectroscopic properties of a two-dimensional time-dependent Cepheid model II. Determination of stellar parameters and abundances
Standard spectroscopic analyses of variable stars are based on hydrostatic
one-dimensional model atmospheres. This quasi-static approach has theoretically
not been validated. We aim at investigating the validity of the quasi-static
approximation for Cepheid variables. We focus on the spectroscopic
determination of the effective temperature , surface gravity
, microturbulent velocity , and a generic metal
abundance -- here taken as iron. We calculate a grid of 1D
hydrostatic plane-parallel models covering the ranges in effective temperature
and gravity encountered during the evolution of a two-dimensional
time-dependent envelope model of a Cepheid computed with the
radiation-hydrodynamics code CO5BOLD. We perform 1D spectral syntheses for
artificial iron lines in local thermodynamic equilibrium varying the
microturbulent velocity and abundance. We fit the resulting equivalent widths
to corresponding values obtained from our dynamical model. For the
four-parametric case, the stellar parameters are typically underestimated
exhibiting a bias in the iron abundance of \approx-0.2\,\mbox{dex}. To avoid
biases of this kind it is favourable to restrict the spectroscopic analysis to
photometric phases using additional
information to fix effective temperature and surface gravity. Hydrostatic 1D
model atmospheres can provide unbiased estimates of stellar parameters and
abundances of Cepheid variables for particular phases of their pulsations. We
identified convective inhomogeneities as the main driver behind potential
biases. For obtaining a complete view on the effects when determining stellar
parameters with 1D models, multi-dimensional Cepheid atmosphere models are
necessary for variables of longer period than investigated here.Comment: accepted for publication in Astronomy & Astrophysic
Spectroscopic properties of a two-dimensional time-dependent Cepheid model I. Description and validation of the model
Standard spectroscopic analyses of Cepheid variables are based on hydrostatic
one-dimensional model atmospheres, with convection treated using various
formulations of mixing-length theory. This paper aims to carry out an
investigation of the validity of the quasi-static approximation in the context
of pulsating stars. We check the adequacy of a two-dimensional time-dependent
model of a Cepheid-like variable with focus on its spectroscopic properties.
With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional
time-dependent envelope model of a Cepheid with K, , solar metallicity, and a 2.8-day pulsation period. Subsequently, we
perform extensive spectral syntheses of a set of artificial iron lines in local
thermodynamic equilibrium. The set of lines allows us to systematically study
effects of line strength, ionization stage, and excitation potential. We
evaluate the microturbulent velocity, line asymmetry, projection factor, and
Doppler shifts. The mean Doppler shift is non-zero and negative, -1 km/s, after
averaging over several full periods and lines. This residual line-of-sight
velocity (related to the "K-term") is primarily caused by horizontal
inhomogeneities, and consequently we interpret it as the familiar convective
blueshift ubiquitously present in non-pulsating late-type stars. Limited
statistics prevent firm conclusions on the line asymmetries. Our
two-dimensional model provides a reasonably accurate representation of the
spectroscopic properties of a short-period Cepheid-like variable star. Some
properties are primarily controlled by convective inhomogeneities rather than
by the Cepheid-defining pulsations
Group Theoretical Quantum Tomography
The paper is devoted to the mathematical foundation of the quantum tomography
using the theory of square-integrable representations of unimodular Lie groups.Comment: 13 pages, no figure, Latex2e. Submitted to J.Math.Phy
- …