415 research outputs found
Spin-dependent transmission in waveguides with periodically modulated strength of the spin-orbit interaction
The electron transmission is evaluated through waveguides, in which the
strength of the spin-orbit interaction(SOI) is varied periodically,
using the transfer-matrix technique. It is shown that exhibits a {\it
spin-transistor} action, as a function of or of the length of one of
the two subunits of the unit cell, provided only one mode is allowed to
propagate in the waveguide. A similar but not periodic behavior occurs as a
function of the incident electron energy. A transparent formula for through
one unit is obtained and helps explain its periodic behavior. The structure
considered is a good candidate for the establishment of a realistic spin
transistor
Spin-depedent transmission of holes through periodically modulated diluted magnetic semiconductor waveguides
We study spin transport of holes through stubless or stubbed waveguides
modulated periodically by diluted magnetic semiconductor (DMS) sections of
width b1 . Injected holes of up (down) spin feel a periodically modulated
barrier (well) potential in the DMS sections and have different transmission
(T) coefficients. T oscillates with b1 for spin-down and decreases fast for
spin-up holes while the relative polarization Pr depends nearly periodically on
the stub height. Using asymmetric stubs leads to a nearly square-wave pattern
in T and to wide plateaus in Pr . T oscillates with the length between the DMS
sections. With two DMS sections per unit, T shows periodically wide gaps for
spin-down holes when a DMS width is varied. The results can be used to create
efficient spin filters.Comment: 5figure
Magneto-optical transport properties of monolayer phosphorene
The electronic properties of monolayer phosphorene are exotic due to its
puckered structure and large intrinsic direct band gap. We derive and discuss
its band structure in the presence of a perpendicular magnetic field. Further,
we evaluate the magneto-optical Hall and longitudinal optical conductivities,
as functions of temperature, magnetic field, and Fermi energy, and show that
they are strongly influenced by the magnetic field. The imaginary part of the
former and the real part of the latter exhibit regular {\it interband}
oscillations as functions of the frequency in the range
eV. Strong {\it intraband} responses in the latter
and week ones in the former occur at much lower frequencies. The
magneto-optical response can be tuned in the microwave-to-terahertz and visible
frequency ranges in contrast with a conventional two-dimensional electron gas
or graphene in which the response is limited to the terahertz regime. This
ability to isolate carriers in an anisotropic structure may make phosphorene a
promising candidate for new optical devices.Comment: 7 pages and 8 figure
Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines
We review the energy spectrum and transport properties of several types of
one- dimensional superlattices (SLs) on single-layer and bilayer graphene. In
single-layer graphene, for certain SL parameters an electron beam incident on a
SL is highly collimated. On the other hand there are extra Dirac points
generated for other SL parameters. Using rectangular barriers allows us to find
analytic expressions for the location of new Dirac points in the spectrum and
for the renormalization of the electron velocities. The influence of these
extra Dirac points on the conductivity is investigated. In the limit of
{\delta}-function barriers, the transmission T through, conductance G of a
finite number of barriers as well as the energy spectra of SLs are periodic
functions of the dimensionless strength P of the barriers, P{\delta}(x) ~ V
(x). For a Kronig-Penney SL with alternating sign of the height of the barriers
the Dirac point becomes a Dirac line for P = {\pi}/2 + n{\pi} with n an
integer. In bilayer graphene, with an appropriate bias applied to the barriers
and wells, we show that several new types of SLs are produced and two of them
are similar to type I and type II semiconductor SLs. Similar as in single-layer
graphene extra "Dirac" points are found. Non-ballistic transport is also
considered.Comment: 26 pages, 17 figure
- …