111 research outputs found
Design and operation of the air-cooled beam dump for the extraction line of CERN's Proton Synchrotron Booster (PSB)
A new beam dump has been designed, built, installed and operated to withstand
the future proton beam extracted from the Proton Synchrotron Booster (PSB) in
the framework of the LHC Injector Upgrade (LIU) Project at CERN, consisting of
up to 1E14 protons per pulse at 2 GeV, foreseen after the machine upgrades
planned for CERN's Long Shutdown 2 (2019-2020). In order to be able to
efficiently dissipate the heat deposited by the primary beam, the new dump was
designed as a cylindrical block assembly, made out of a copper alloy and cooled
by forced airflow. In order to determine the energy density distribution
deposited by the beam in the dump, Monte Carlo simulations were performed using
the FLUKA code, and thermo-mechanical analyses were carried out by importing
the energy density into ANSYS. In addition, Computational Fluid Dynamics (CFD)
simulations of the airflow were performed in order to accurately estimate the
heat transfer convection coefficient on the surface of the dump. This paper
describes the design process, highlights the constraints and challenges of
integrating a new dump for increased beam power into the existing facility and
provides data on the operation of the dump
On the role of secondary pions in spallation targets
We use particle-transport simulations to show that secondary pions play a
crucial role for the development of the hadronic cascade and therefore for the
production of neutrons and photons from thick spallation targets. In
particular, for the n_TOF lead spallation target, irradiated with 20 GeV/c
protons, neutral pions are involved in the production of ~90% of the
high-energy photons; charged pions participate in ~40% of the integral neutron
yield. Nevertheless, photon and neutron yields are shown to be relatively
insensitive to large changes of the average pion multiplicity in the individual
spallation reactions. We characterize this robustness as a peculiar property of
hadronic cascades in thick targets.Comment: 17 pages, 14 figures. Submitted to Eur. Phys. J.
Neutron-induced fission cross section of 234 U measured at the CERN n_TOF facility
The neutron-induced fission cross section of 234U has been measured at the CERN n-TOF facility relative to the standard fission cross section of 235U from 20 keV to 1.4 MeV and of 238U from 1.4 to 200 MeV. A fast ionization chamber (FIC) was used as a fission fragment detector with a detection efficiency of no less than 97%. The high instantaneous flux and the low background characterizing the n-TOF facility resulted in wide-energy-range data (0.02 to 200 MeV), with high energy resolution, high statistics, and systematic uncertainties bellow 3%. Previous investigations around the energy of the fission threshold revealed structures attributed to β-vibrational levels, which have been confirmed by the present measurements. Theoretical calculations have been performed, employing the talys code with model parameters tuned to fairly reproduce the experimental data
Event Generators for Simulating Heavy Ion Interactions of Interest in Evaluating Risks in Human Spaceflight
Simulating the Space Radiation environment with Monte Carlo Codes, such as FLUKA, requires the ability to model the interactions of heavy ions as they penetrate spacecraft and crew member's bodies. Monte-Carlo-type transport codes use total interaction cross sections to determine probabilistically when a particular type of interaction has occurred. Then, at that point, a distinct event generator is employed to determine separately the results of that interaction. The space radiation environment contains a full spectrum of radiation types, including relativistic nuclei, which are the most important component for the evaluation of crew doses. Interactions between incident protons with target nuclei in the spacecraft materials and crew member's bodies are well understood. However, the situation is substantially less comfortable for incident heavier nuclei (heavy ions). We have been engaged in developing several related heavy ion interaction models based on a Quantum Molecular Dynamics-type approach for energies up through about 5 GeV per nucleon (GeV/A) as part of a NASA Consortium that includes a parallel program of cross section measurements to guide and verify this code development
Nuclear model developments in FLUKA for present and future applications
The FLUKAS code [1–3] is used in research laboratories all around the world for challenging applications spanning a very wide range of energies, projectiles and targets. FLUKAS is also extensively used for in hadrontherapy research studies and clinical planning systems. In this paper some of the recent developments in the FLUKAS nuclear physics models of relevance for very different application fields including medical physics are presented. A few examples are shown demonstrating the effectiveness of the upgraded code
Simulations and measurements of cleaning with 100 MJ beams in the LHC
The CERN Large Hadron Collider is routinely storing proton beam intensities of more than 100 MJ, which puts extraordinary demands on the control of beam losses to avoid quenches of the superconducting magnets. Therefore, a detailed understanding of the LHC beam cleaning is required. We present tracking and shower simulations of the LHC's multi-stage collimation system and compare with measured beam losses, which allow us to conclude on the predictive power of the simulations.Asian Committee for Future Accelerators (ACFA),American Physical Society Division of Physics of Beams (APS-DPB),Chinese Academy of Sciences (CAS),European Physical Society Accelerator Group (EPS-AG)peer-reviewe
Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider
The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.peer-reviewe
First Results of the Ce(n,γ)Ce Cross-Section Measurement at n_TOF
An accurate measurement of the Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the Ce Maxwellian-averaged cross-section
First Results of the Ce(n,γ)Ce Cross-Section Measurement at n_TOF
An accurate measurement of the Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the Ce Maxwellian-averaged cross-section
- …