15 research outputs found

    A step-by-step diagnosis of exclusion in a twin pregnancy with acute respiratory failure due to non-fatal amniotic fluid embolism: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Respiratory failure may develop during the later stages of pregnancy and is usually associated with tocolysis or other co-existing conditions such as pneumonia, sepsis, pre-eclampsia or amniotic fluid embolism syndrome.</p> <p>Case presentation</p> <p>We present the case of a 34-year-old healthy woman with a twin pregnancy at 31 weeks and 6 days who experienced acute respiratory failure, a few hours after administration of tocolysis (ritodrine), due to preterm premature rupture of the membranes. Her chest discomfort was significantly ameliorated after the ritodrine infusion was stopped and a Cesarean section was performed 48 hours later under spinal anesthesia; however, 2 hours after surgery she developed severe hypoxemia, hypotension, fever and mild coagulopathy. The patient was intubated and transferred to the intensive care unit where she made a quick and uneventful recovery within 3 days. As there was no evidence for drug- or infection-related thromboembolic or myocardial causes of respiratory failure, we conclude that our patient experienced a rare type of non-fatal amniotic fluid embolism.</p> <p>Conclusion</p> <p>In spite of the lack of solid scientific support for our diagnosis, we conclude that our patient suffered an uncommon type of amniotic fluid embolism syndrome and we believe that this report highlights the need for extreme vigilance and a high index of suspicion for such a diagnosis in any pregnant individual.</p

    A fatal case of recurrent amiodarone-induced thyrotoxicosis after percutaneous tracheotomy: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amiodarone is a widely used antiarrythmic drug, which may produce secondary effects on the thyroid. In 14–18% of amiodarone-treated patients, there is overt thyroid dysfunction, usually in the form of amiodarone-induced thyrotoxicosis, which can be difficult to manage with standard medical treatment.</p> <p>Case presentation</p> <p>Presented is the case of a 65-year-old man, under chronic treatment of atrial fibrillation with amiodarone, who was admitted to the Intensive Care Unit with acute cardio-respiratory failure and fever. He was recently hospitalized with respiratory distress, attributed to amiodarone-induced pulmonary fibrosis. Clinical and laboratory investigation revealed thyrotoxicosis due to amiodarone treatment. He was begun on thionamide, prednisone and beta-blockers. After a short term improvement of his clinical status the patient underwent percutaneous tracheotomy due to weaning failure from mechanical ventilation, which led to the development of recurrent thyrotoxicosis, unresponsive to medical treatment. Finally, the patient developed multiple organ failure and died, seven days later.</p> <p>Conclusion</p> <p>We suggest that percutaneous tracheotomy could precipitate a thyrotoxic crisis, particularly in non-euthyroid patients suffering from concurrent severe illness and should be performed only in parallel with emergency thyroid surgery, when indicated.</p

    Relation of tricuspid annular displacement and tissue Doppler imaging velocities with duration of weaning in mechanically ventilated patients with acute pulmonary edema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liberation from the ventilator is a difficult task, whereas early echocardiographic indices of weaning readiness are still lacking. The aim of this study was to test whether tricuspid annular plane systolic excursion (TAPSE) and right ventricular (RV) systolic (Sm) and diastolic (Em & Am) tissue Doppler imaging (TDI) velocities are related with duration of weaning in mechanically ventilated patients with acute respiratory failure due to acute pulmonary edema (APE).</p> <p>Methods</p> <p>Detailed quantification of left and right ventricular systolic and diastolic function was performed at admission to the Intensive Care Unit by Doppler echocardiography, in a cohort of 32 mechanically ventilated patients with APE. TAPSE and RV TDI velocities were compared between patients with and without prolonged weaning (≥ or < 7 days from the first weaning trial respectively), whereas their association with duration of ventilation and left ventricular (LV) echo-derived indices was tested with multivariate linear and logistic regression analysis.</p> <p>Results</p> <p>Patients with prolonged weaning (n = 12) had decreased TAPSE (14.59 ± 1.56 vs 19.13 ± 2.59 mm), Sm (8.68 ± 0.94 vs 11.62 ± 1.77 cm/sec) and Em/Am ratio (0.98 ± 0.80 vs 2.62 ± 0.67, p <0.001 for all comparisons) and increased Ε/e' (11.31 ± 1.02 vs 8.98 ± 1.70, p <0.001) compared with subjects without prolonged weaning (n = 20). Logistic regression analysis revealed that TAPSE (R<sup>2 </sup>= 0.53, beta slope = 0.76, p < 0.001), Sm (R<sup>2 </sup>= 0.52, beta = 0.75, p < 0.001) and Em/Am (R<sup>2 </sup>= 0.57, beta = 0.32, p < 0.001) can predict length of weaning ≥ 7 days. The above measures were also proven to correlate significantly with Ε/e' (r = -0.83 for TAPSE, r = -0.87 for Sm and r = -0.79 for Em/Am, p < 0.001 for all comparisons).</p> <p>Conclusions</p> <p>We suggest that in mechanically ventilated patients with APE, low TAPSE and RV TDI velocities upon admission are associated with delayed liberation from mechanical ventilation, probably due to more severe LV heart failure.</p

    Fractals and power law in pulmonary medicine. Implications for the clinician

    No full text
    SUMMARY. Physiological data often display fluctuations, which have been traditionally considered as noise. However, as Goldberger has emphasized, biological systems are deterministic systems with noise. This noise reflects inherent dynamics and is responsible for the adaptation of the organism to its surroundings. Various techniques derived from statistical physics have already been applied to biological signals, especially in the field of cardiovascular medicine, unravelling potential pathogenetic mechanisms of disease and leading to the construction of more accurate prediction models. Recently, considerable effort has been devoted by several research groups to the assessment of the inherent variability and complexity of the respiratory system, concerning both structure and function. A few clinical studies, mainly involving patients with asthma and chronic obstructive pulmonary disease (COPD), have demonstrated that identification of loss of complexity of respiratory signals can be of significant value in both diagnosis of disease and monitoring of therapy. This review presents results from these studies and describes the basic methods for the assessment of dynamics that govern respiratory physiology in health and disease. Pneumon 2010, 23(3):240-259

    Intracardiac origin of heart rate variability, pacemaker funny current and their possible association with critical illness

    Get PDF
    Heart rate variability (HRV) is an indirect estimator of autonomic modulation of heart rate and is considered a risk marker in critical illness, particularly in heart failure and severe sepsis. A reduced HRV has been found in critically ill patients and has been associated with neuro-autonomic uncoupling or decreased baroreflex sensitivity. However, results from human and animal experimental studies indicate that intracardiac mechanisms might also be responsible for interbeat fluctuations. These studies have demonstrated that different membrane channel proteins and especially the so-called 'funny' current (If), an hyperpolarization-activated, inward current that drives diastolic depolarization resulting in spontaneous activity in cardiac pacemaker cells, are altered during critical illness. Furthermore, membrane channels kinetics seem to have significant impact upon HRV, whose early decrease might reflect a cellular metabolic stress. In this review article we present research findings regarding intracardiac origin of HRV, at the cellular level and in both isolated sinoatrial node and whole ex vivo heart preparations. In addition, we will review results from various experimental studies that support the interrelation between If and HRV during endotoxemia. We suggest that reduced HRV during sepsis could also be associated with altered pacemaker cell membrane properties, due to ionic current remodelin

    Melatonin and cortisol exhibit different circadian rhythm profiles during septic shock depending on timing of onset: a prospective observational study

    No full text
    Abstract Background Septic shock has been found to disrupt circadian rhythms. Moreover, timing of onset has been associated with different circadian profiles in experimental studies. Results In this prospective study, we enrolled 26 patients divided into two groups: Group A (N = 15) included subjects who had septic shock at the time of ICU admission and Group B (N = 11) included patients who developed septic shock during ICU admission. 6-Sulfatoxymelatonin (aMT6s) and cortisol levels were measured in urine samples every 4 h over a 24-h period. Two sets of samples were taken from Group A (entry/septic shock and exit) and three sets from Group B (entry, septic shock and exit). Mean, amplitude that is the difference between peak and mean values, as well as peak time, were estimated for both aMT6s and cortisol. In Group A, amplitude of aMT6s upon entry (septic shock) was reduced in relation to exit (437.2 ± 309.2 vs. 674.1 ± 657.6 ng/4 h, p < 0.05). Peak time occurred earlier (10:00 p.m. vs. 07:00 a.m, p < 0.05) and correlated with higher APACHE II score and longer ICU stay. In Group B, aMT6s mean values were significantly increased during septic shock (2492.2 ± 1709.1 ng/4 h) compared to both entry (895.4 ± 715.5 ng/4 h) and exit (1308.6 ± 1214.4 ng/4 h, p < 0.05 for all comparisons). Amplitude of aMT6s was also elevated during septic shock (794.8 ± 431.8 ng/4 h) in relation to entry (293.1 ± 275.9 ng/4 h, p < 0.05). Regarding cortisol rhythm in Group A, during septic shock amplitude was increased compared to exit (13.3 ± 31 ng/4 h vs. 8.7 ± 21.2 ng/4 h p < 0.05) and correlated with reduced hospital length of stay. In Group B, cortisol mean values and amplitude during septic shock (10 ± 5.3 and 3 ± 1.8 ng/4 h, respectively) were significantly reduced compared to both entry (30 ± 57.9 and 12.3 ± 27.3 ng/4 h) and exit (14.4 ± 20.7 and 6.6 ± 8.7 ng/4 h, p < 0.05 for all comparisons) and correlated with higher SOFA score and longer ICU and hospital stay. Conclusions Septic shock induced inverse changes of aMT6s and cortisol circadian rhythm profiles both within and between different groups of patients, depending on timing of onset. Reduced rhythmicity was correlated with severity of disease and longer ICU stay
    corecore