33 research outputs found

    Immune profiling of pre- and post-treatment breast cancer tissues from the SWOG S0800 neoadjuvant trial

    Full text link
    Abstract Background How the immune microenvironment changes during neoadjuvant chemotherapy of primary breast cancer is not well understood. Methods We analyzed pre- and post-treatment samples from 60 patients using the NanoString PanCancer IO360™ assay to measure the expression of 750 immune-related genes corresponding to 14 immune cell types and various immune functions, and assessed TIL counts and PD-L1 protein expression by immunohistochemistry. Treatment associated changes in gene expression levels were compared using t-test with Bonferroni correction. TIL count, PD-L1 protein and immune metagenes were compared using Wilcoxon test. Baseline immune markers were correlated with pathologic complete response (pCR) using estrogen receptor and treatment arm adjusted logistic regression. Results At baseline, high TIL counts and high expression of chemoattractant cytokines (CCL21, CCL19) and cytotoxic T cell markers were associated with higher pCR rate. High expression of stromal genes (VEGFB, TGFB3, PDGFB, FGFR1, IGFR1), mast and myeloid inflammatory cell metagenes, stem cell related genes (CD90, WNT11, CTNNB1) and CX3CR1, and IL11RA were associated with residual disease (RD). After treatment, in cases with pCR, TIL counts and most immune genes decreased significantly. Among RD cases, TIL counts and PD-L1 expression did not change but cellular stress and hypoxia associated genes (DUSP1, EGR1), and IL6, CD36, CXCL2, CD69 and the IL8/VEGF metagene increased. Conclusions Activated T cells in the tumor microenvironment are associated with pCR whereas stromal functions are associated with residual disease. Most immune functions decrease during neoadjuvant chemotherapy but several immunotherapy targets (PD-L1, IL6, IL8) remain expressed in RD suggesting potential therapeutic strategies.https://deepblue.lib.umich.edu/bitstream/2027.42/148572/1/40425_2019_Article_563.pd

    Recent insights into the effect of natural and environmental estrogens on mammary development and carcinogenesis

    No full text
    The present workreviews recent findings related to the action of steroidal (physiolo-wworkk reviewws fifindings ((physiological) estrogens on normal mammary gland development and carcinogenesis, as wwell as effects of related environmental mediators phyto- and xeno-estrogens), the role of wwhich remains controversial. Orchestration by estrogen receptors i.e. ERα and ERβ) and coregulators of growwth, apoptosis and differentiation of epithelial cells, directed our analysis. The bidirectional coordination betwween epithelium and stroma in parallel wwith maintenance of stemness are also investigated. The relevance of nuclear and extranuclear localization of ERs and other eventual estrogen binding sites, mediating differential actions in regard to these various topics, is critically addressed to delineate the importance of direct and indirect activation procedures and delicate feedbackk loops ((ligand-induced or/and cross-talkk activation, respectively). The inclusion of the outlined regulatory concepts in drug design programs for the prevention and treatment of breast cancer may have potent effects. © 2011 UBC Press.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    CD68, CD163, and matrix metalloproteinase 9 (MMP-9) co-localization in breast tumor microenvironment predicts survival differently in ER-positive and -negative cancers

    No full text
    Abstract Background The role of tumor-associated macrophages (TAMs) in the cancer immune landscape and their potential as treatment targets or modulators of response to treatment are gaining increasing interest. TAMs display high molecular and functional complexity. Therefore their objective assessment as breast cancer biomarkers is critical. The aims of this study were to objectively determine the in situ expression and significance of TAM biomarkers (CD68, CD163, and MMP-9) in breast cancer and to identify subclasses of patients who could benefit from TAM-targeting therapies. Methods We measured CD68, CD163, and MMP-9 protein expression in formalin-fixed paraffin-embedded tissues of breast carcinomas represented in tissue microarray format using multiplexed quantitative immunofluorescence (QIF) in two independent Yale cohorts: cohort A—n = 398, estrogen receptor–positive (ER+) and ER− cases—and the triple-negative breast cancer (TNBC)-only cohort B (n = 160). Associations between macrophage markers, ER status, and survival were assessed. Protein expression measured by QIF was compared with mRNA expression data from the METABRIC study. Results All three macrophage markers were co-expressed, displaying higher expression in ER− cancers. High pan-macrophage marker CD68 correlated with poorer overall survival (OS) only in ER− cases of cohort A (P = 0.02). High expression of CD163 protein in TAMs was associated with improved OS in ER− cases (cohort A, P = 0.03 and TNBC cohort B, P = 0.04, respectively) but not in ER+ cancers. MMP-9 protein was not individually associated with OS. High expression of MMP-9 in the CD68+/CD163+ TAMs was associated with worse OS in ER+ tumors (P <0.001) but not in ER− cancers. In the METABRIC dataset, mRNA levels followed the co-expression pattern observed in QIF but did not always show the same trend regarding OS. Conclusions Macrophage activity markers correlate with survival differently in ER+ and ER− cancers. The association between high co-expression and co-localization of MMP-9/CD163/CD68 and poor survival in ER+ cancers suggests that these cancers may be candidates for macrophage-targeted therapies

    Androgen Triggers the Pro-Migratory CXCL12/CXCR4 Axis in AR-Positive Breast Cancer Cell Lines: Underlying Mechanism and Possible Implications for the Use of Aromatase Inhibitors in Breast Cancer

    No full text
    Background/Aims: Reports regarding the role of androgen in breast cancer (BC) are conflicting. Some studies suggest that androgen could lead to undesirable responses in the presence of certain BC tumor characteristics. We have shown that androgen induces C-X-C motif chemokine 12 (CXCL12) in BC cell lines. Our aim was to identify the mechanisms regulating the phenotypic effects of androgen-induced CXCL12 on Androgen Receptor (AR) positive BC cell lines. Methods: We analyzed the expression of CXCL12 and its receptors with qPCR and ELISA and the role of Nuclear Receptor Coactivator 1 (NCOA1) in this effect. AR effects on the CXCL12 promoter was studied via Chromatin-immunoprecipitation. We also analyzed publically available data from The Cancer Genome Atlas to verify AR-CXCL12 interactions and to identify the effect or Aromatase Inhibitors (AI) therapy on CXCL12 expression and disease progression in AR positive cases. Results: CXCL12 induction occurs only in AR-positive BC cell lines, possibly via an Androgen Response Element, upstream of the CXCL12 promoter. The steroid receptor co-regulator NCOA1 is critical for this effect. Androgen only induced the motility of p53-mutant BC cells T47D cells via upregulation of CXCR4 expression while they had no effect on wild-type p53 MCF-7 cells. Loss of CXCR4 expression and depletion of CXCL12 abolished the effect of androgen in T47D cells while inhibition of p53 expression in MCF-7 cells made them responsive to androgen and increased their motility in the presence to androgen. Patients with estrogen receptor positive (ER+)/AR+ BC treated with AIs were at increased risk of disease progression compared to ER+/AR+ non-AI treated and ER+/AR- AI treated cases. Conclusion: AIs may lead to unfavorable responses in some ER/AR positive BC cases, especially in patients with AR+, p53 mutant tumors

    Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells

    No full text
    ERα17p is a peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ERα) and initially found to interfere with ERα-related calmodulin binding. ERα17p was subsequently found to elicit estrogenic responses in E2-deprived ERα-positive breast cancer cells, increasing proliferation and ERE-dependent gene transcription. Surprisingly, in E2-supplemented media, ERα17p-induced apoptosis and modified the actin network, influencing cell motility. Here, we report that ERα17p internalizes in breast cancer cells (T47D, MDA-MB-231, SKBR3) and induces a massive early (3 h) transcriptional activity. Remarkably, about 75% of significantly modified transcripts were also modified by E2, confirming the pro-estrogenic profile of ERα17p. The different ER spectra of the used cell lines allowed us to identify a specific ERα17p signature related to ERα as well as its variant ERα36. With respect to ERα, the peptide activates nuclear (cell cycle, cell proliferation, nucleic acid and protein synthesis) and extranuclear signaling pathways. In contrast, through ERα36, it mainly triggers inhibitory actions on inflammation. This is the first work reporting a detailed ERα36-specific transcriptional signature. In addition, we report that ERα17p-induced transcripts related to apoptosis and actin modifying effects of the peptide are independent from its estrogen receptor(s)-related actions. We discuss our findings in view of the potential use of ERα17p as a selective peptidomimetic estrogen receptor modulator (PERM). © 2013 Federation of European Biochemical Societies.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Identification of polyproline II regions derived from the proline-rich nuclear receptor coactivators PNRC and PNRC2: New insights for ERα coactivator interactions

    No full text
    Protein-protein interactions are crucial for signal transductions required for cell differentiation and proliferation. Their modulation is therefore key to the development of therapeutic alternatives, particularly in the context of cancer. According to literature data, the polyproline-rich nuclear receptor coactivators PNRC and PNRC2 interact with estrogen receptor (ERα) through their PxxP SH3-binding motifs. In a search to identify the molecular features governing this interaction, we explored using electronic circular dichroism (ECD) spectroscopy and molecular dynamics (MD) calculations, the capacity of a range of putative biologically active peptides derived from these proteins and containing this PxxP motif(s) to form polyproline II (PPII) domains. An additional more exhaustive structural study on a lead PPII peptide was also performed using 2D nuclear magnetic resonance (NMR) spectroscopy. With the exception of one of all the investigated peptides (PNRC-D), binding assays failed to detect any affinity for Grb2 SH3 domains, suggesting that PPII motifs issued from Grb2 antagonists have a binding mode distinct from those derived from Grb2 agonists. Instead, the peptides revealed a competitive binding ability against a synthetic peptide (ERα17p) with a putative PPII-cognate domain located within a coregulator recruitment region of ERα (AF-2 site). Our work, which constitutes the first structure-related interaction study concerning PNRC and PNRC2, supports not only the existence of PxxP-induced PPII sequences in these coregulators, but also confirms the presence of a PPII recognition site in the AF-2 of the steroid receptor ERα, a region important for transcription regulation. Chirality 25:628-642, 2013. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.SCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe

    ERα36, a new variant of the ERα is expressed in triple negative breast carcinomas and has a specific transcriptomic signature in breast cancer cell lines

    No full text
    Triple negative breast cancer is deprived of estrogen receptor alpha (ERα), progesterone receptor (PR) and HER-2 protein. It constitutes the most heterogeneous and aggressive group of breast carcinomas, for which identification of novel characteristics and characterization of putative targets becomes very demanding. In the present work we have assayed the expression of ERα36, a recently identified ERα variant of 36 kDa, in a series of triple negative breast cancers, in relation to the clinical behavior and other clinico-pathological features of the tumors. While widely expressed within the cytoplasm in almost all tumors, we found that exclusively the membrane/submembrane expression of the receptor exhibits a correlation with patient's survival. Moreover, membrane ERα36 correlates in an inverse manner with the expression of miRNA210, a pro-angiogenic miR, with high prognostic relevance in triple negative carcinomas. A thorough transcriptomic, pharmacological-based approach in breast cancer cell lines, revealed an early (direct) transcriptional signature of the receptor activation, related to immune system processes and T-cell differentiation, RNA biosynthesis, regulation of metabolism, VEGF signaling and regulation of the cell cycle, with a down-regulation of CREB, NFκB and STATs transcription factors. Finally, ERα36 expression is not limited within breast cancer epithelial linen, but is equally identified in tumor vasculature, peritumoral fat tissue, lymphocytic infiltrate and stromal fibroblasts. In light of the above, ERα36 could represent a major counterpart in triple negative breast cancer. © 2011 Elsevier Inc. All rights reserved.SCOPUS: cp.jinfo:eu-repo/semantics/publishe

    Adipocytes as immune cells: Differential expression of TWEAK, BAFF, and APRIL and their receptors (Fn14, BAFF-R, TACI, and BCMA) at different stages of normal and pathological adipose tissue development

    No full text
    Adipose tissue represents a rich source of multipotent stem cells. Mesenchymal cells, isolated from this source, can differentiate to other cell types in vitro and therefore can be used for a number of regenerative therapies. Our view of adipose tissue has recently changed, establishing adipocytes as new members of the immune system, as they produce a number of proinflammatory cytokines (such as IL-6 and TNFα and chemokines, in addition to adipokines (leptin, adiponectin, resistin) and molecules associated with the innate immune system. In this paper, we report the differential expression of TNF-superfamily members B cell activating factor of the TNF Family (BAFF), a proliferation inducing ligand (APRIL), and TNF-like weak inducer of apoptosis (TWEAK) in immature-appearing and mature adipocytes and in benign and malignant adipose tissue-derived tumors. These ligands act through their cognitive receptors, BAFF receptor, transmembrane activator and calcium signal-modulating cyclophilic ligand (TACI), B cell maturation Ag (BCMA), and fibroblast growth factor-inducible 14 (Fn14), which are also expressed in these cells. We further report the existence of functional BCMA, TACI, and Fn14 receptors and their ligands BAFF, APRIL, and TWEAK on adipose tissue-derived mesenchymal cells, their interaction modifying the rate of adipogenesis. Our data integrate BAFF, APRIL, and TWEAK and their receptors BCMA, TACI, and Fn14 as novel potential mediators of adipogenesis, in addition to their specific role in immunity, and define immature and mature adipocytes as source of immune mediators. Copyright © 2009 by The American Association of Immunologists, Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    ERα17p, a peptide reproducing the hinge region of the estrogen receptor α associates to biological membranes: A biophysical approach

    No full text
    Recently, we identified a peptide (ERα17p, P 295LMIKRSKKNSLALSLT311) that corresponds to the 295-311 sequence of the estrogen receptor α (ERα, hinge region) and which exerts a panel of pharmacological effects in breast cancer cells. Remarkably, these effects can result from the interaction of ERα17p with the plasma membrane. Herein, we show that ERα17p adopts a β-sheet secondary structure when in contact with anionic phospholipids and that it is engulfed within the lipid bilayer. While ERα17p increases the fluidity of membrane mimics, it weakly internalizes in living cells. In light of the above, one may evoke one important role of the 295-311 region of the ERα: the corresponding peptide could be secreted/delivered to the extracellular medium to interact with neighboring cells, both intracellularly and at the membrane level. Finally, the 295-311 region of ERα being in proximity to the cystein-447, the palmitoylation site of the ERα raises the question of its involvement in the interaction/stabilization of the protein with the membrane. © 2011 Elsevier Inc. All rights reserved.SCOPUS: cp.jinfo:eu-repo/semantics/publishe
    corecore