5 research outputs found

    Invasive aspergillosis in patients with COVID-19 in intensive care units: results of a multicenter study

    Get PDF
    Objective. To study risk factors, clinical and radiological features and effectiveness of the treatment of invasive aspergillosis (IA) in adult patients with COVID-19 (COVID-IA) in intensive care units (ICU). Materials and Methods. A total of 60 patients with COVID-IA treated in ICU (median age 62 years, male – 58%) were included in this multicenter prospective study. The comparison group included 34 patients with COVID-IA outside the ICU (median age 62 years, male – 68%). ECMM/ISHAM 2020 criteria were used for diagnosis of CAPA, and EORTC/MSGERC 2020 criteria were used for evaluation of the treatment efficacy. A case-control study (one patient of the main group per two patients of the control group) was conducted to study risk factors for the development and features of CAPA. The control group included 120 adult COVID-19 patients without IA in the ICU, similar in demographic characteristics and background conditions. The median age of patients in the control group was 63 years, male – 67%. Results. 64% of patients with COVID-IA stayed in the ICU. Risk factors for the COVID-IA development in the ICU: chronic obstructive pulmonary disease (OR = 3.538 [1.104–11.337], p = 0.02), and prolonged (> 10 days) lymphopenia (OR = 8.770 [4.177–18.415], p = 0.00001). The main location of COVID-IA in the ICU was lungs (98%). Typical clinical signs were fever (97%), cough (92%), severe respiratory failure (72%), ARDS (64%) and haemoptysis (23%). Typical CT features were areas of consolidation (97%), hydrothorax (63%), and foci of destruction (53%). The effective methods of laboratory diagnosis of COVID-IA were test for galactomannan in BAL (62%), culture (33%) and microscopy (22%) of BAL. The main causative agents of COVID-IA are A. fumigatus (61%), A. niger (26%) and A. flavus (4%). The overall 12-week survival rate of patients with COVID-IA in the ICU was 42%, negative predictive factors were severe respiratory failure (27.5% vs 81%, p = 0.003), ARDS (14% vs 69%, p = 0.001), mechanical ventilation (25% vs 60%, p = 0.01), and foci of destruction in the lung tissue on CT scan (23% vs 59%, p = 0.01). Conclusions. IA affects predominantly ICU patients with COVID-19 who have concomitant medical conditions, such as diabetes mellitus, hematological malignancies, cancer, and COPD. Risk factors for COVID-IA in ICU patients are prolonged lymphopenia and COPD. The majority of patients with COVID-IA have their lungs affected, but clinical signs of IA are non-specific (fever, cough, progressive respiratory failure). The overall 12-week survival in ICU patients with COVID-IA is low. Prognostic factors of poor outcome in adult ICU patients are severe respiratory failure, ARDS, mechanical ventilation as well as CT signs of lung tissue destruction

    Transients in the load node at power loss: group run-out of induction motors

    No full text
    The simulation of transient processes in the complex load node with powerful induction motors at the moment of power loss is carried out. For the modeling the method of synthetic schemes (Dommel’s algorithm) was used. Calculations are carried out within the dynamic model of motors in phase coordinates. The results of simulation and analysis modes of the load node with two induction motors connected to the electric buses of 10 kV and fed through a step-down transformer with 16 MVA capacity are presented. The applied model of power transformer consists of inductively coupled branches. The features of single and joint run-out of motors with different torque of mechanical loads are analyzed. Estimates of the parameters and time intervals at which the run-out of the motors is close to synchronous are obtained, the features of energy recuperation and the interaction of the motors in the load node are analyzed

    Cationic penetrating antioxidants switch off Mn cluster of photosystem II in situ

    No full text
    Mitochondria-targeted antioxidants (also known as ‘Skulachev Ions’ electrophoretically accumulated by mitochondria) exert anti-ageing and ROS-protecting effects well documented in animal and human cells. However, their effects on chloroplast in photosynthetic cells and corresponding mechanisms are scarcely known. For the first time, we describe a dramatic quenching effect of (10-(6-plastoquinonyl)decyl triphenylphosphonium (SkQ1) on chlorophyll fluorescence, apparently mediated by redox interaction of SkQ1 with Mn cluster in Photosystem II (PSII) of chlorophyte microalga Chlorella vulgaris and disabling the oxygen-evolving complex (OEC). Microalgal cells displayed a vigorous uptake of SkQ1 which internal concentration built up to a very high level. Using optical and EPR spectroscopy, as well as electron donors and in silico molecular simulation techniques, we found that SkQ1 molecule can interact with Mn atoms of the OEC in PSII. This stops water splitting giving rise to potent quencher(s), e.g. oxidized reaction centre of PSII. Other components of the photosynthetic apparatus proved to be mostly intact. This effect of the Skulachev ions might help to develop in vivo models of photosynthetic cells with impaired OEC function but essentially intact otherwise. The observed phenomenon suggests that SkQ1 can be applied to study stress-induced damages to OEC in photosynthetic organisms. © 2019, Springer Nature B.V
    corecore