2 research outputs found
āInnovative high pressure/high temperature, multi-sensing bioreactors system for microbial risk assessment in underground hydrogen storageā
This study addresses the microbial risks associated with Underground Hydrogen Storage (UHS), a critical component in the transition towards renewable energy systems, by employing an innovative multi-reactor system (Bio-xplorer) to simulate UHS conditions in two Italian reservoirs. The microbiological risk assessment (MRA) of Reservoir A and B was evaluated by subjecting them to gas mixtures of 10 % H2 and 90 % CH4, and 99 % H2 and 1 % CO2, respectively. In Reservoir A, the stability of pressure and temperature, the negligible optical density, and lack of microbial metabolites suggested a low risk of microbial activation. Molecular analyses confirmed the absence of sulphate- reducing bacteria (SRB) and limited growth of hydrogenotrophic methanogens (HM). Similarly, in Reservoir B, the absence of SRB and limited occurrence of HM indicated a low microbiological risk. Overall, the present work supports the safe and efficient implementation of UHS, a promising mitigation technique for climate change, using an innovative tool for MRA
Expanding the product portfolio of carbon dioxide and hydrogen-based gas fermentation with an evolved strain of Clostridium carboxidivorans
CO2:H2-based gas fermentation with acetogenic Clostridium species are at an early stage of development. This work exploited the Adaptive Laboratory Evolution technique to improve the growth of C. carboxidivorans P7 on CO2 and H2. An adapted strain with decreased growth lag phase and improved biomass production was obtained.
Genomic analysis revealed a conserved frameshift mutation in the catalytic subunit of the hexameric hydrogenase gene. The resulted truncated protein variant, most likely lacking its functionality, suggests that other hydrogenases might be more efficient for H2-based growth of this strain. Furthermore, the adapted strain generated
hexanol as primary fermentation product. For the first time, hexanol was produced directly from CO2:H2 blend, achieving the highest maximum productivity reported so far via gas fermentation. Traces of valerate, pentanol, eptanol and octanol were observed in the fermentation broth. The adapted strain shows promising to enrich the
product spectrum targetable by future gas fermentation processes