452 research outputs found

    Theory of interacting electrons on the honeycomb lattice

    Full text link
    The low-energy theory of electrons interacting via repulsive short-range interactions on graphene's honeycomb lattice at half filling is presented. The exact symmetry of the Lagrangian with local quartic terms for the Dirac field dictated by the lattice is D_2 x U_c(1) x (time reversal), where D_2 is the dihedral group, and U_c(1) is a subgroup of the SU_c(2) "chiral" group of the non-interacting Lagrangian, that represents translations in Dirac language. The Lagrangian describing spinless particles respecting this symmetry is parameterized by six independent coupling constants. We show how first imposing the rotational, then Lorentz, and finally chiral symmetry to the quartic terms, in conjunction with the Fierz transformations, eventually reduces the set of couplings to just two, in the "maximally symmetric" local interacting theory. We identify the two critical points in such a Lorentz and chirally symmetric theory as describing metal-insulator transitions into the states with either time-reversal or chiral symmetry being broken. In the site-localized limit of the interacting Hamiltonian the low-energy theory describes the continuous transitions into the insulator with either a finite Haldane's (circulating currents) or Semenoff's (staggered density) masses, both in the universality class of the Gross-Neveu model. The picture of the metal-insulator transition on a honeycomb lattice emerges at which the residue of the quasiparticle pole at the metallic and the mass-gap in the insulating phase both vanish continuously as the critical point is approached. We argue that the Fermi velocity is non-critical as a consequence of the dynamical exponent being fixed to unity by the emergent Lorentz invariance. Effects of long-range interaction and the critical behavior of specific heat and conductivity are discussed.Comment: 16 revtex pages, 4 figures; typos corrected, new and updated references; published versio

    High frequency dielectric and magnetic anomaly at the phase transition in NaV2O5

    Get PDF
    We found anomalies in the temperature dependence of the dielectric and the magnetic susceptibiliy of NaV_2O_5 in the microwave and far infrared frequency ranges. The anomalies occur at the phase transition temperature T_c, at which the spin gap opens. The real parts of the dielectric constants epsilon_a and epsilon_c decrease below T_c. The decrease of epsilon_a (except for the narrow region close to T_c) is proportional to the intensity of the x-ray reflection appearing at T_c. The dielectric constant anomaly can be explained by the zigzag charge ordering in the ab-plane appearing below T_c. The anomaly of the microwave magnetic losses is probably related to the coupling between the spin and charge degrees of freedom in vanadium ladders.Comment: 3 PS-figures, LATEX-text, new experimental data added, typos correcte

    Charge-ordering phase transition and order-disorder effects in the Raman spectra of NaV2O5

    Full text link
    In the ac polarized Raman spectra of NaV2O5 we have found anomalous phonon broadening, and an energy shift of the low-frequency mode as a function of the temperature. These effects are related to the breaking of translational symmetry, caused by electrical disorder that originates from the fluctuating nature of the V {4.5+} valence state of vanadium. The structural correlation length, obtained from comparisons between the measured and calculated Raman scattering spectra, diverges at T< 5 K, indicating the existence of the long-range charge order at very low temperatures, probably at T=0 K.Comment: 8 pages, 4 figures, new version, to appear in PR

    Two-dimensional magnetoexcitons in the presence of spin-orbit coupling

    Full text link
    We study theoretically the effect of spin-orbit coupling on quantum well excitons in a strong magnetic field. We show that, in the presence of an in-plane field component, the excitonic absorption spectrum develops a double-peak structure due to hybridization of bright and dark magnetoexcitons. If the Rashba and Dresselhaus spin-orbit constants are comparable, the magnitude of splitting can be tuned in a wide interval by varying the azimuthal angle of the in-plane field. We also show that the interplay between spin-orbit and Coulomb interactions leads to an anisotropy of exciton energy dispersion in the momentum plane. The results suggest a way for direct optical measurements of spin-orbit parameters.Comment: 9 pages, 6 figure

    Crossover exponent in O(N) phi^4 theory at O(1/N^2)

    Full text link
    The critical exponent phi_c, derived from the anomalous dimension of the bilinear operator responsible for crossover behaviour in O(N) phi^4 theory, is calculated at O(1/N^2) in a large N expansion in arbitrary space-time dimension d = 4 - 2 epsilon. Its epsilon expansion agrees with the known O(epsilon^4) perturbative expansion and new information on the structure of the five loop exponent is provided. Estimates of phi_c and the related crossover exponents beta_c and gamma_c, using Pade-Borel resummation, are provided for a range of N in three dimensions.Comment: 8 latex page

    Long-term variations in surface air pressure and surface air temperature in the Northern Hemisphere mid-latitudes

    Get PDF
    Ā© 2017, Allerton Press, Inc. The spatiotemporal variability of surface air pressure and surface air temperature in the Northern Hemisphere troposphere in 1990-2014 is described. In 2005 the low-frequency component (LFC) of average air temperature in January averaged over the latitude zone of 32.5Ā°-67.5Ā° N has stopped its increase that lasted for 35 years (from 1970). The LFC of air temperature in July has continued growing since 1975 (for 39 years). The anomalies of air pressure and air temperature for thirty-year periods and the dynamics of LFC of air temperature and air pressure in the atmospheric centers of action are analyzed

    A multiloop improvement of non-singlet QCD evolution equations

    Get PDF
    An approach is elaborated for calculation of "all loop" contributions to the non-singlet evolution kernels from the diagrams with renormalon chain insertions. Closed expressions are obtained for sums of contributions to kernels P(z)P(z) for the DGLAP equation and V(x,y)V(x,y) for the "nonforward" ER-BL equation from these diagrams that dominate for a large value of b0b_0, the first Ī²\beta-function coefficient. Calculations are performed in the covariant Ī¾\xi-gauge in a MS-like scheme. It is established that a special choice of the gauge parameter Ī¾=āˆ’3\xi=-3 generalizes the standard "naive nonabelianization" approximation. The solutions are obtained to the ER-BL evolution equation (taken at the "all loop" improved kernel), which are in form similar to one-loop solutions. A consequence for QCD descriptions of hard processes and the benefits and incompleteness of the approach are briefly discussed.Comment: 13 pages, revtex, 2 figures are enclosed as eps-file, the text style and figures are corrected following version, accepted for publication to Phys. Rev.

    Investigation of thermal and magnetic properties of defects in a spin-gap compound NaV2O5

    Full text link
    The specific heat, magnetic susceptibility and ESR signals of a Na-deficient vanadate Na_xV_2O_5 (x=1.00 - 0.90) were studied in the temperature range 0.07 - 10 K, well below the transition point to a spin-gap state. The contribution of defects provided by sodium vacancies to the specific heat was observed. It has a low temperature part which does not tend to zero till at least 0.3 K and a high temperature power-like tail appears above 2 K. Such dependence may correspond to the existence of local modes and correlations between defects in V-O layers. The magnetic measurements and ESR data reveal S=1/2 degrees of freedom for the defects, with their effective number increasing in temperature and under magnetic field. The latter results in the nonsaturating magnetization at low temperature. No long-range magnetic ordering in the system of defects was found. A model for the defects based on electron jumps near vacancies is proposed to explain the observed effects. The concept of a frustrated two-dimensional correlated magnet induced by the defects is considered to be responsible for the absence of magnetic ordering.Comment: 6 pages, 8 figure

    Using electronic structure changes to map the H-T phase diagram of alpha'-NaV2O5

    Full text link
    We report polarized optical reflectance studies of \alpha'-NaV2O5 as a function of temperature (4-45 K) and magnetic field (0-60 T). Rung directed electronic structure changes, as measured by near-infrared reflectance ratios \Delta R(H)=R(H)/R(H=0 T), are especially sensitive to the phase boundaries. We employ these changes to map out an H-T phase diagram. Topological highlights include the observation of two phase boundaries slightly below T_{SG}, enhanced curvature of the 34 K phase boundary above 35 T, and, surprisingly, strong hysteresis effects of both transitions with applied field.Comment: 4 pages, 3 figures, PRB accepte

    An improved \eps expansion for three-dimensional turbulence: summation of nearest dimensional singularities

    Full text link
    An improved \eps expansion in the dd-dimensional (d>2d > 2) stochastic theory of turbulence is constructed by taking into account pole singularities at dā†’2d \to 2 in coefficients of the \eps expansion of universal quantities. Effectiveness of the method is illustrated by a two-loop calculation of the Kolmogorov constant in three dimensions.Comment: 4 page
    • ā€¦
    corecore