234 research outputs found

    Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study.

    Get PDF
    ObjectiveDiabetic and prediabtic states, including insulin resistance, fasting hyperglycemia, and hyperinsulinemia, are associated with metabolic dysregulation. These components have been individually linked to increased risks of cognitive decline and Alzheimer's disease. We aimed to comprehensively relate all of the components of metabolic dysregulation to cognitive function and brain magnetic resonance imaging (MRI) in middle-aged adults.Research design and methodsFramingham Offspring participants who underwent volumetric MRI and detailed cognitive testing and were free of clinical stroke and dementia during examination 7 (1998-2001) constituted our study sample (n = 2,439; 1,311 women; age 61 ± 9 years). We related diabetes, homeostasis model assessment of insulin resistance (HOMA-IR), fasting insulin, and glycohemoglobin levels to cross-sectional MRI measures of total cerebral brain volume (TCBV) and hippocampal volume and to verbal and visuospatial memory and executive function. We serially adjusted for age, sex, and education alone (model A), additionally for other vascular risk factors (model B), and finally, with the inclusion of apolipoprotein E-ε4, plasma homocysteine, C-reactive protein, and interleukin-6 (model C).ResultsWe observed an inverse association between all indices of metabolic dysfunction and TCBV in all models (P < 0.030). The observed difference in TCBV between participants with and without diabetes was equivalent to approximately 6 years of chronologic aging. Diabetes and elevated glycohemoglobin, HOMA-IR, and fasting insulin were related to poorer executive function scores (P < 0.038), whereas only HOMA-IR and fasting insulin were inversely related to visuospatial memory (P < 0.007).ConclusionsMetabolic dysregulation, especially insulin resistance, was associated with lower brain volumes and executive function in a large, relatively healthy, middle-aged, community-based cohort

    Unsupervised machine learning framework for discriminating major variants of concern during COVID-19

    Full text link
    Due to high mutation rates, COVID-19 evolved rapidly, and several variants such as Alpha, Gamma, Delta, Beta, and Omicron emerged with altered viral properties like the severity of the disease caused, transmission rates, etc. These variants burdened the medical systems worldwide and created a massive impact on the world economy as each had to be studied and dealt with in its specific ways. Unsupervised machine learning methods have the ability to compress, characterize, and visualize unlabelled data. In this paper, we present a framework that utilizes unsupervised machine learning methods to discriminate and visualize the associations between major COVID-19 variants based on their genome sequences. These methods comprise a combination of selected dimensionality reduction and clustering techniques. The framework processes the RNA sequences by performing a k-mer analysis on the data and then compares the results from different dimensionality reduction methods including: Principal Component Analysis (PCA), t-Distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation Projection (UMAP). Our framework also employs agglomerative hierarchical clustering to visualize the mutational differences among major variants of concern and country-wise mutational differences for a particular variant (Delta and Omicron) using dendrograms. We also provide country-wise mutational differences for selected variants via dendrograms. We conclude that the proposed framework can effectively distinguish between the major variants and hence can be used for the identification of emerging variants in the future

    Circulating brain‐derived neurotrophic factor concentrations and the risk of cardiovascular disease in the community

    Get PDF
    BACKGROUND: Brain‐derived neurotrophic factor (BDNF) is a pleiotropic peptide involved in maintaining endothelial integrity. It is unknown if circulating BDNF levels are associated with risk of cardiovascular disease (CVD). METHODS AND RESULTS: We prospectively investigated the association of circulating BDNF levels with cardiovascular events and mortality in 3687 participants (mean age 65 years, 2068 women) from the Framingham Heart Study (FHS). Using a common nonsynonomous single nucleotide polymorphism (SNP) in the BDNF gene (rs6265), we then performed a Mendelian randomization experiment in the CARDIoGRAM (Coronary ARtery DIsease Genome‐Wide Replication And Meta‐Analysis) consortium (>22 000 coronary artery disease [CAD] cases, >60 000 controls) to investigate whether SNP rs6265 was associated with CAD in CARDIoGRAM and, if so, whether the effect estimate differed from that predicted based on FHS data. On follow‐up (median 8.9 years), 467 individuals (261 women) in FHS experienced a CVD event, and 835 (430 women) died. In multivariable‐adjusted Cox regression, serum BDNF was associated inversely with CVD risk (hazard ratio [HR] per 1‐SD increase 0.88, 95% CI 0.80 to 0.97, P=0.01) and with mortality (HR 0.87, 95% CI 0.80 to 0.93, P=0.0002). SNP rs6265 was associated with BDNF concentrations (0.772 ng/mL increase per minor allele copy) in FHS. In CARDIoGRAM, SNP rs6265 was associated with CAD (odds ratio 0.957, 95% CI 0.923 to 0.992), a magnitude consistent with the predicted effect (HR per minor allele copy 0.99, 95% CI 0.98 to 1.0; P=0.06 for difference between predicted and observed effect). CONCLUSION: Higher serum BDNF is associated with a decreased risk of CVD and mortality. Mendelian randomization suggests a causal protective role of BDNF in the pathogenesis of CVD

    Interrelations Between Arterial Stiffness, Target Organ Damage, and Cardiovascular Disease Outcomes

    Get PDF
    Background-Excess transmission of pressure pulsatility caused by increased arterial stiffness may incur microcirculatory damage in end organs (target organ damage [TOD]) and, in turn, elevate risk for cardiovascular disease (CVD) events.Methods and Results-We related arterial stiffness measures (carotid-femoral pulse wave velocity, mean arterial pressure, central pulse pressure) to the prevalence and incidence of TOD (defined as albuminuria and/or echocardiographic left ventricular hypertrophy) in up to 6203 Framingham Study participants (mean age 50 +/- 15 years, 54% women). We then related presence of TOD to incident CVD in multivariable Cox regression models without and with adjustment for arterial stiffness measures. Cross-sectionally, greater arterial stiffness was associated with a higher prevalence of TOD (adjusted odds ratios ranging from 1.23 to 1.54 per SD increment in arterial stiffness measure, P<0.01). Prospectively, increased carotid-femoral pulse wave velocity was associated with incident albuminuria (odds ratio per SD 1.28, 95% CI, 1.02-1.61; P<0.05), whereas higher mean arterial pressure and central pulse pressure were associated with incident left ventricular hypertrophy (odds ratio per SD 1.37 and 1.45, respectively; P<0.01). On follow-up, 297 of 5803 participants experienced a first CVD event. Presence of TOD was associated with a 33% greater hazard of incident CVD (95% CI, 0-77%; P<0.05), which was attenuated upon adjustment for baseline arterial stiffness measures by 5-21%.Conclusions-Elevated arterial stiffness is associated with presence of TOD and may partially mediate the relations of TOD with incident CVD. Our observations in a large community-based sample suggest that mitigating arterial stiffness may lower the burden of TOD and, in turn, clinical CVD

    Evaluation of Host Protein Biomarkers by ELISA From Whole Lysed Peripheral Blood for Development of Diagnostic Tests for Active Tuberculosis

    Get PDF
    Tuberculosis (TB) remains a significant global health crisis and the number one cause of death for an infectious disease. The health consequences in high-burden countries are significant. Barriers to TB control and eradication are in part caused by difficulties in diagnosis. Improvements in diagnosis are required for organisations like the World Health Organisation (WHO) to meet their ambitious target of reducing the incidence of TB by 50% by the year 2025, which has become hard to reach due to the COVID-19 pandemic. Development of new tests for TB are key priorities of the WHO, as defined in their 2014 report for target product profiles (TPPs). Rapid triage and biomarker-based confirmatory tests would greatly enhance the diagnostic capability for identifying and diagnosing TB-infected individuals. Protein-based test methods e.g. lateral flow devices (LFDs) have a significant advantage over other technologies with regard to assay turnaround time (minutes as opposed to hours) field-ability, ease of use by relatively untrained staff and without the need for supporting laboratory infrastructure. Here we evaluate the diagnostic performance of nine biomarkers from our previously published biomarker qPCR validation study; CALCOCO2, CD274, CD52, GBP1, IFIT3, IFITM3, SAMD9L, SNX10 and TMEM49, as protein targets assayed by ELISA. This preliminary evaluation study was conducted to quantify the level of biomarker protein expression across latent, extra-pulmonary or pulmonary TB groups and negative controls, collected across the UK and India, in whole lysed blood samples (WLB). We also investigated associative correlations between the biomarkers and assessed their suitability for ongoing diagnostic test development, using receiver operating characteristic/area under the curve (ROC) analyses, singly and in panel combinations. The top performing single biomarkers for pulmonary TB versus controls were CALCOCO2, SAMD9L, GBP1, IFITM3, IFIT3 and SNX10. TMEM49 was also significantly differentially expressed but downregulated in TB groups. CD52 expression was not highly differentially expressed across most of the groups but may provide additional patient stratification information and some limited use for incipient latent TB infection. These show therefore great potential for diagnostic test development either in minimal configuration panels for rapid triage or more complex formulations to capture the diversity of disease presentations

    Retinal vascular function in asymptomatic individuals with a positive family history of cardiovascular disease

    Get PDF
    Purpose To compare retinal microvascular function in healthy individuals with and without a positive family history (FH) of cardiovascular disease (CVD). Methods Retinal vessel reactivity was assessed by means of dynamic retinal vessel analysis in 38 healthy subjects aged between 30 and 66 years with a positive FH of CVD and 37 age‐ and gender‐matched control subjects. Other assessments included blood pressure (BP) profiles, blood glucose and lipid metabolism markers, Framingham risk scores (FRS), carotid intima‐media thickness (c‐IMT) and brachial flow‐mediated dilation (FMD). Results Family history‐positive subjects showed decreased retinal arterial baseline diameter fluctuation, dilation amplitude, percent dilation, and overall constriction response slope (p = 0.001; p = 0.015; p = 0.001; and p 0.05). The arterial MC% correlated negatively with decreased high‐density lipoprotein cholesterol (r = −0.52, p = 0.002) in only FH‐positive group. Conclusion Although macrovascular function is preserved in individuals with FH positive for CVD but with low FRS, there are, however, functional impairments at the retinal microvascular level that correlate with established plasma markers for cardiovascular risk

    Atrial fibrillation without comorbidities: Prevalence, incidence and prognosis (from the Framingham Heart Study)

    Get PDF
    BACKGROUND: The epidemiology of atrial fibrillation (AF) without comorbidities, known as \u27lone AF\u27, is uncertain. Although it has been considered a benign condition, we hypothesized that it confers a worse prognosis compared with a matched sample without AF. METHODS: We described the proportion of AF without comorbidities (clinical, subclinical cardiovascular disease and triggers) among the entire AF sample in Framingham Heart Study (FHS). We compared AF without comorbidities with typical AF, and age-, sex- and cohort-matched individuals without AF, using Cox proportional hazards analysis in relation to combined cardiovascular events (stroke, heart failure, myocardial infarction), and mortality. RESULTS: Of 10,311 FHS participants, 1,961 were diagnosed with incident AF, among which 173 individuals had AF without comorbidities (47% women, mean age 71+/-12 years). AF without comorbidities had a prevalence of 1.7% of the entire cohort, and an annual incidence of 0.5 per 1000 person-years. During a median follow-up of 9.7 years after initial AF, 137 individuals with AF without comorbidities (79.2%) died and 141 individuals developed cardiovascular events (81.5%). AF without comorbidities had significantly lower mortality (HR 0.67, 95%CI 0.55-0.81, P \u3c .001) and total cardiovascular events (HR 0.66, 95% CI 0.55-0.80, P \u3c .001) compared with typical AF. However, mortality (HR1.43, 95% CI 1.18-1.75, P \u3c .001) and risk of total cardiovascular events (HR 1.73, 95% CI 1.39-2.16, P \u3c .001) were higher than age-, sex-, and cohort-matched individuals without AF. CONCLUSIONS: The risk of cardiovascular outcomes and mortality among individuals with AF without comorbidities is lower than typical AF, but is significantly elevated compared with matched individuals without AF

    Circulating ceramide ratios and risk of vascular brain aging and dementia

    Get PDF
    BACKGROUND: We determined the association between ratios of plasma ceramide species of differing fatty-acyl chain lengths and incident dementia and Alzheimer\u27s disease (AD) dementia in a large, community-based sample. METHODS: We measured plasma ceramide levels in 1892 [54% women, mean age 70.1 (SD 6.9) yr.] dementia-free Framingham Offspring Study cohort participants between 2005 and 2008. We related ratios of very long-chain (C24:0, C22:0) to long-chain (C16:0) ceramides to subsequent risk of incident dementia and AD dementia. Structural MRI brain measures were included as secondary outcomes. RESULTS: During a median 6.5 year follow-up, 81 participants developed dementia, of whom 60 were diagnosed with AD dementia. In multivariable Cox-proportional hazards analyses, each standard deviation (SD) increment in the ratio of ceramides C24:0/C16:0 was associated with a 27% reduction in the risk of dementia (HR 0.73, 95% CI 0.56-0.96) and AD dementia (HR 0.73, 95% CI 0.53-1.00). The ratio of ceramides C22:0/C16:0 was also inversely associated with incident dementia (HR per SD 0.75, 95% CI 0.57-0.98), and approached statistical significance for AD (HR 0.73, 95% CI 0.53-1.01, P = 0.056). Higher ratios of ceramides C24:0/C16:0 and C22:0/C16:0 were also cross-sectionally associated with lower white matter hyperintensity burden on MRI (-0.05 ± 0.02, P = 0.02; -0.06 ± 0.02, P = 0.003; respectively per SD increase), but not with other MRI brain measures. CONCLUSIONS: Higher plasma ratios of very long-chain to long-chain ceramides are associated with a reduced risk of incident dementia and AD dementia in our community-based sample. Circulating ceramide ratios may serve as potential biomarkers for predicting dementia risk in cognitively healthy adults
    corecore