891 research outputs found

    Enzymic studies on sulphatide metabolism in different stages of experimental allergic encephalomyelitis

    Get PDF
    The activities of three enzymes-cerebroside sulphotransferase, 3'-phospho-adenosine 5'-phosphosulphate synthesizing enzyme and arylsulphatases A and B have been studied in various developmental and recovery stages of experimental allergic encephalomyelitis. The concentrations of cerebroside and sulphatide were also analysed during these stages. It was observed that the sulphatide concentration decreased during the development of the disease, with a concurrent increase in the activity of arylsulphatase and vice versa during the recovery stages. 3'-Phosphoadenosine 5'-phosphosulphate synthesis as well as sulphotransferase activity increased during the pre-acute stage of the disease, reached a maximum at the acute stage and decreased during recovery stages

    Sulphate metabolism in acute EAE rats using isolated brain perfusion technique

    Get PDF
    Metabolism of glycolipids and glycosaminoglycans were studied in rats in the acute stage of experimental allergic encephalomyelitis (EAE) using isolated brain perfusion technique. It was observed that there was a significant decrease in the concentration of cerebroside, sulphatide and GAG (hyaluronic acid and low sulphated GAG) when compared to normal and pairfed control rats. The radioactive sulphate incorporation into the cerebroside sulphate and sulphated GAG was significantly higher in the case of rats in the acute stage of EAE than the normal and pairfed control rats

    Laser Range Sensors

    Get PDF
    This paper presents the design aspects of laser range finders and proximity sensors beingdeveloped at IRDE for different applications. The principle used in most of the laser rangefinders is pulse echo or time-of-flight measurement. Optical triangulation is used in proximitysensors while techniques like phase detection and interferometry are employed in instrumentsfor surveying and motion controllers where high accuracy is desired. Most of the laser rangefinders are designed for ranging non-cooperative targets

    Assessment of the outcomes of open side-to-side choledochoduodenostomy in the management of choledocholithiasis

    Get PDF
    Background: Gallstone disease is one of the most common digestive diseases leading to frequent hospital visits and its prevalence shows ethnic variability, with rates of approximately 10-15% in the United States and Europe. The present study aims to prospectively assess the outcomes of open side-to-side choledochoduodenostomy in the management of choledocholithiasis. Methods: This hospital-based prospective observational study was conducted in the Department of Surgery, Tezpur medical College and Hospital, Tezpur, over one year period, from July 2021 to June 2022. The study includes twenty-four patients admitted to the surgery department for bile duct stone operations. After intraoperative confirmation of the criteria, these patients underwent choledochoduodenostomy. The patients were followed for 2 months postoperatively after discharge. Results: Only a few patients had immediate postoperative complications which were managed conservatively. No patient had any evidence of retained stone, nor did they have any symptoms of cholangitis, features suggestive of the development of Sump syndrome, or any other follow-up postoperative complications. Conclusion: Open side-to-side choledochoduodenostomy should be considered a method of choice in remote areas where endoscopic facilities are lacking and in patients where cost is a factor in deciding the choice of procedure, with reduced postoperative complications like retained stones and a shorter duration of hospital stay in expert surgical hands

    Stochastic series expansion method for quantum Ising models with arbitrary interactions

    Full text link
    A quantum Monte Carlo algorithm for the transverse Ising model with arbitrary short- or long-range interactions is presented. The algorithm is based on sampling the diagonal matrix elements of the power series expansion of the density matrix (stochastic series expansion), and avoids the interaction summations necessary in conventional methods. In the case of long-range interactions, the scaling of the computation time with the system size N is therefore reduced from N^2 to Nln(N). The method is tested on a one-dimensional ferromagnet in a transverse field, with interactions decaying as 1/r^2.Comment: 9 pages, 5 figure

    Delta isobar masses, large N_c relations, and the quark model

    Get PDF
    Motivated by recent remarks on the Delta+ mass and comparisons between the quark model and relations based on large-N_c with perturbative flavor breaking, two sets of Delta masses consistent with these constraints are constructed. These two sets, based either on an experimentally determined mass splitting or a quark model of isospin symmetry breaking, are shown to be inconsistent. The model dependence of this inconsistency is examined, and suggestions for improved experiments are made. An explicit quark model calculation and mass relations based on the large-N_c limit with perturbative flavor breaking are compared. The expected level of accuracy of such relations is realized in the quark model, except for mass relations spanning more than one SU(6) representation. It is shown that the Delta0 and Delta++ pole masses and Delta0 - Delta+ = (Delta- - Delta++)/3 about 1.5 MeV are more consistent with model expectations than the analogous Breit-Wigner masses and their splittings.Comment: 10 pages, including 1 eps figure, revte

    Phenotype-genotype association grid: a convenient method for summarizing multiple association analyses

    Get PDF
    BACKGROUND: High-throughput genotyping generates vast amounts of data for analysis; results can be difficult to summarize succinctly. A single project may involve genotyping many genes with multiple variants per gene and analyzing each variant in relation to numerous phenotypes, using several genetic models and population subgroups. Hundreds of statistical tests may be performed for a single SNP, thereby complicating interpretation of results and inhibiting identification of patterns of association. RESULTS: To facilitate visual display and summary of large numbers of association tests of genetic loci with multiple phenotypes, we developed a Phenotype-Genotype Association (PGA) grid display. A database-backed web server was used to create PGA grids from phenotypic and genotypic data (sample sizes, means and standard errors, P-value for association). HTML pages were generated using Tcl scripts on an AOLserver platform, using an Oracle database, and the ArsDigita Community System web toolkit. The grids are interactive and permit display of summary data for individual cells by a mouse click (i.e. least squares means for a given SNP and phenotype, specified genetic model and study sample). PGA grids can be used to visually summarize results of individual SNP associations, gene-environment associations, or haplotype associations. CONCLUSION: The PGA grid, which permits interactive exploration of large numbers of association test results, can serve as an easily adapted common and useful display format for large-scale genetic studies. Doing so would reduce the problem of publication bias, and would simplify the task of summarizing large-scale association studies

    Semiclassical energy formulas for power-law and log potentials in quantum mechanics

    Full text link
    We study a single particle which obeys non-relativistic quantum mechanics in R^N and has Hamiltonian H = -Delta + V(r), where V(r) = sgn(q)r^q. If N \geq 2, then q > -2, and if N = 1, then q > -1. The discrete eigenvalues E_{n\ell} may be represented exactly by the semiclassical expression E_{n\ell}(q) = min_{r>0}\{P_{n\ell}(q)^2/r^2+ V(r)}. The case q = 0 corresponds to V(r) = ln(r). By writing one power as a smooth transformation of another, and using envelope theory, it has earlier been proved that the P_{n\ell}(q) functions are monotone increasing. Recent refinements to the comparison theorem of QM in which comparison potentials can cross over, allow us to prove for n = 1 that Q(q)=Z(q)P(q) is monotone increasing, even though the factor Z(q)=(1+q/N)^{1/q} is monotone decreasing. Thus P(q) cannot increase too slowly. This result yields some sharper estimates for power-potential eigenvlaues at the bottom of each angular-momentum subspace.Comment: 20 pages, 5 figure

    Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity

    Get PDF
    Glucose ingestion after an overnight fast triggers an insulin-dependent, homeostatic program that is altered in diabetes. The full spectrum of biochemical changes associated with this transition is currently unknown. We have developed a mass spectrometry-based strategy to simultaneously measure 191 metabolites following glucose ingestion. In two groups of healthy individuals (n=22 and 25), 18 plasma metabolites changed reproducibly, including bile acids, urea cycle intermediates, and purine degradation products, none of which were previously linked to glucose homeostasis. The metabolite dynamics also revealed insulin's known actions along four key axes—proteolysis, lipolysis, ketogenesis, and glycolysis—reflecting a switch from catabolism to anabolism. In pre-diabetics (n=25), we observed a blunted response in all four axes that correlated with insulin resistance. Multivariate analysis revealed that declines in glycerol and leucine/isoleucine (markers of lipolysis and proteolysis, respectively) jointly provide the strongest predictor of insulin sensitivity. This observation indicates that some humans are selectively resistant to insulin's suppression of proteolysis, whereas others, to insulin's suppression of lipolysis. Our findings lay the groundwork for using metabolic profiling to define an individual's 'insulin response profile', which could have value in predicting diabetes, its complications, and in guiding therapy

    Reaction mechanism and characteristics of T_{20} in d + ^3He backward elastic scattering at intermediate energies

    Get PDF
    For backward elastic scattering of deuterons by ^3He, cross sections \sigma and tensor analyzing power T_{20} are measured at E_d=140-270 MeV. The data are analyzed by the PWIA and by the general formula which includes virtual excitations of other channels, with the assumption of the proton transfer from ^3He to the deuteron. Using ^3He wave functions calculated by the Faddeev equation, the PWIA describes global features of the experimental data, while the virtual excitation effects are important for quantitative fits to the T_{20} data. Theoretical predictions on T_{20}, K_y^y (polarization transfer coefficient) and C_{yy} (spin correlation coefficient) are provided up to GeV energies.Comment: REVTEX+epsfig, 17 pages including 6 eps figs, to be published in Phys. Rev.
    • 

    corecore