3 research outputs found

    Solid state synthesis of carbon-encapsulated iron carbide nanoparticles and their interaction with living cells †

    Get PDF
    Superparamagnetic carbon-encapsulated iron carbide nanoparticles (NPs), Fe 7 C 3 @C, with unique properties, were produced from pure ferrocene by high pressure-high temperature synthesis. These NPs combine the merits of nanodiamonds and SPIONs but lack their shortcomings which limit their use for biomedical applications. Investigation of these NPs by X-ray diffraction, electron microscopy techniques, X-ray spectroscopic and magnetic measurement methods has demonstrated that this method of synthesis yields NPs with perfectly controllable physical properties. Using magnetic and subsequent fractional separation of magnetic NPs from residual carbon, the aqueous suspensions of Fe 7 C 3 @C NPs with an average particle size of $25 nm were prepared. The suspensions were used for in vitro studies of the interaction of Fe 7 C 3 @C NPs with cultured mammalian cells. The dynamics of interaction of the living cells with Fe 7 C 3 @C was studied by optical microscopy using time-lapse video recording and also by transmission electron microscopy. Using novel highly sensitive cytotoxicity tests based on the cell proliferation assay and long-term live cell observations it was shown that the internalization of Fe 7 C 3 @C NPs has no cytotoxic effect on cultured cells and does not interfere with the process of their mitotic division, a fundamental property that ensures the existence of living organisms. The influence of NPs on the proliferative activity of cultured cells was not detected as well. These results indicate that the carbon capsules of Fe 7 C 3 @C NPs are air-tight which could offer great opportunities for future use of these superparamagnetic NPs in biology and medicine

    Alternative mechanisms of managing the education’s development in the social investment model of Russia’s economic growth: standardization versus deregulation

    Get PDF
    Regression analysis is used to determine the contribution of the factors of managing the development of higher education – share of university branches – to increase the population’s quality of life. To determine the optimal approach to managing education’s development in the social investment model of Russia’s economic growth with alternative mechanisms of standardization and deregulation. The results of the research show that absolute standardization, as well as absolute deregulation of higher education, does not allow achieving significant results in the sphere of increase in quality of life in Russia. The determined and substantiated optimal scenario of managing the development of higher education in Russia to increase the quality of life envisages a foundation on a flexible approach, which envisages the combination of standardization and deregulation. It is recommended to entirely refuse branches in favor of main universities, refuse government financing in favor of fee-based education and refuse diversification of education forms in favor of the intramural form of study. This allows raising the quality of life by 13.26% (up to 70.87 points). For practical implementation of this approach, it is offered to allow each region to form their own programs of development of higher education with the foundation of the main federal principles
    corecore