127 research outputs found

    Predictive cartography of metal binders using generative topographic mapping

    Get PDF
    © 2017, Springer International Publishing AG. Generative topographic mapping (GTM) approach is used to visualize the chemical space of organic molecules (L) with respect to binding a wide range of 41 different metal cations (M) and also to b uild predictive models for stability constants (logK) of 1:1 (M:L) complexes using “density maps,” “activity landscapes,” and “selectivity landscapes” techniques. A two-dimensional map describing the entire set of 2962 metal binders reveals the selectivity and promiscuity zones with respect to individual metals or groups of metals with similar chemical properties (lanthanides, transition metals, etc). The GTM-based global (for entire set) and local (for selected subsets) models demonstrate a good predictive performance in the cross-validation procedure. It is also shown that the data likelihood could be used as a definition of the applicability domain of GTM-based models. Thus, the GTM approach represents an efficient tool for the predictive cartography of metal binders, which can both visualize their chemical space and predict the affinity profile of metals for new ligands

    Predictive Models for the Free Energy of Hydrogen Bonded Complexes with Single and Cooperative Hydrogen Bonds

    Get PDF
    © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimIn this work, we report QSPR modeling of the free energy ΔG of 1 : 1 hydrogen bond complexes of different H-bond acceptors and donors. The modeling was performed on a large and structurally diverse set of 3373 complexes featuring a single hydrogen bond, for which ΔG was measured at 298 K in CCl4. The models were prepared using Support Vector Machine and Multiple Linear Regression, with ISIDA fragment descriptors. The marked atoms strategy was applied at fragmentation stage, in order to capture the location of H-bond donor and acceptor centers. Different strategies of model validation have been suggested, including the targeted omission of individual H-bond acceptors and donors from the training set, in order to check whether the predictive ability of the model is not limited to the interpolation of H-bond strength between two already encountered partners. Successfully cross-validating individual models were combined into a consensus model, and challenged to predict external test sets of 629 and 12 complexes, in which donor and acceptor formed single and cooperative H-bonds, respectively. In all cases, SVM models outperform MLR. The SVM consensus model performs well both in 3-fold cross-validation (RMSE=1.50 kJ/mol), and on the external test sets containing complexes with single (RMSE=3.20 kJ/mol) and cooperative H-bonds (RMSE=1.63 kJ/mol)

    Structural and Physico-Chemical Interpretation (SPCI) of QSAR Models and Its Comparison with Matched Molecular Pair Analysis

    Get PDF
    © 2016 American Chemical Society.This paper describes the Structural and Physico-Chemical Interpretation (SPCI) approach, which is an extension of a recently reported method for interpretation of quantitative structure-activity relationship (QSAR) models. This approach can efficiently be used to reveal structural motifs and the major physicochemical factors affecting the investigated properties. Its efficacy was demonstrated both on the classical Free-Wilson data set and on several data sets with different end points (permeability of the blood-brain barrier, fibrinogen receptor antagonists, acute oral toxicity). Structure-activity patterns extracted from QSAR models with SPCI were in good correspondence with experimentally observed relationships and molecular docking, regardless of the machine learning method used. Comparison of SPCI with the matched molecular pair (MMP) method clearly shows an advantage of our approach over MMP, especially for small or structurally diverse data sets. The developed approach has been implemented in the SPCI software tool with a graphical user interface, which is publicly available at http://qsar4u.com/pages/sirms-qsar.php

    Expert system for predicting reaction conditions: The Michael reaction case

    Get PDF
    © 2015 American Chemical Society. A generic chemical transformation may often be achieved under various synthetic conditions. However, for any specific reagents, only one or a few among the reported synthetic protocols may be successful. For example, Michael β-addition reactions may proceed under different choices of solvent (e.g., hydrophobic, aprotic polar, protic) and catalyst (e.g., Brønsted acid, Lewis acid, Lewis base, etc.). Chemoinformatics methods could be efficiently used to establish a relationship between the reagent structures and the required reaction conditions, which would allow synthetic chemists to waste less time and resources in trying out various protocols in search for the appropriate one. In order to address this problem, a number of 2-classes classification models have been built on a set of 198 Michael reactions retrieved from literature. Trained models discriminate between processes that are compatible and respectively processes not feasible under a specific reaction condition option (feasible or not with a Lewis acid catalyst, feasible or not in hydrophobic solvent, etc.). Eight distinct models were built to decide the compatibility of a Michael addition process with each considered reaction condition option, while a ninth model was aimed to predict whether the assumed Michael addition is feasible at all. Different machine-learning methods (Support Vector Machine, Naive Bayes, and Random Forest) in combination with different types of descriptors (ISIDA fragments issued from Condensed Graphs of Reactions, MOLMAP, Electronic Effect Descriptors, and Chemistry Development Kit computed descriptors) have been used. Models have good predictive performance in 3-fold cross-validation done three times: balanced accuracy varies from 0.7 to 1. Developed models are available for the users at http://infochim.u-strasbg.fr/webserv/VSEngine.html. Eventually, these were challenged to predict feasibility conditions for ∼50 novel Michael reactions from the eNovalys database (originally from patent literature)

    Predictive Models for Halogen-bond Basicity of Binding Sites of Polyfunctional Molecules

    Get PDF
    © 2016 Wiley-VCH Verlag GmbH & Co. KGaA.Halogen bonding (XB) strength assesses the ability of an electron-enriched group to be involved in complexes with polarizable electrophilic halogenated or diatomic halogen molecules. Here, we report QSPR models of XB of particular relevance for an efficient screening of large sets of compounds. The basicity is described by pKBI2, the decimal logarithm of the experimental 1 : 1 (B :I2) complexation constant K of organic compounds (B) with diiodine (I2) as a reference halogen-bond donor in alkanes at 298K. Modeling involved ISIDA fragment descriptors, using SVM and MLR methods on a set of 598 organic compounds. Developed models were then challenged to make predictions for an external test set of 11 polyfunctional compounds for which unambiguous assignment of the measured effective complexation constant to specific groups out of the putative acceptor sites is not granted. At this stage, developed models were used to predict pKBI2 of all putative acceptor sites, followed by an estimation of the predicted effective complexation constant using the ChemEqui program. The best consensus models perform well both in cross-validation (root mean squared error RMSE=0.39-0.47logKBI2 units) and external predictions (RMSE=0.49). The SVM models are implemented on our website (http://infochim.u-strasbg.fr/webserv/VSEngine.html) together with the estimation of their applicability domain and an automatic detection of potential halogen-bond acceptor atoms

    Synthesis, biological evaluation, X-ray molecular structure and molecular docking studies of RGD mimetics containing 6-amino-2,3-dihydroisoindolin-1-one fragment as ligands of integrin αIIbβ3

    Get PDF
    AbstractA series of novel RGD mimetics containing phthalimidine fragment was designed and synthesized. Their antiaggregative activity determined by Born’s method was shown to be due to inhibition of fibrinogen binding to αIIbβ3. Molecular docking of RGD mimetics to αIIbβ3 receptor showed the key interactions in this complex, and also some correlations have been observed between values of biological activity and docking scores. The single crystal X-ray data were obtained for five mimetics

    A critical overview of computational approaches employed for COVID-19 drug discovery

    Get PDF
    COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought the most severe disruptions to societies and economies since the Great Depression. Massive experimental and computational research effort to understand and characterize the disease and rapidly develop diagnostics, vaccines, and drugs has emerged in response to this devastating pandemic and more than 130 000 COVID-19-related research papers have been published in peer-reviewed journals or deposited in preprint servers. Much of the research effort has focused on the discovery of novel drug candidates or repurposing of existing drugs against COVID-19, and many such projects have been either exclusively computational or computer-aided experimental studies. Herein, we provide an expert overview of the key computational methods and their applications for the discovery of COVID-19 small-molecule therapeutics that have been reported in the research literature. We further outline that, after the first year the COVID-19 pandemic, it appears that drug repurposing has not produced rapid and global solutions. However, several known drugs have been used in the clinic to cure COVID-19 patients, and a few repurposed drugs continue to be considered in clinical trials, along with several novel clinical candidates. We posit that truly impactful computational tools must deliver actionable, experimentally testable hypotheses enabling the discovery of novel drugs and drug combinations, and that open science and rapid sharing of research results are critical to accelerate the development of novel, much needed therapeutics for COVID-19

    Virtual screening, synthesis and biological evaluation of DNA intercalating antiviral agents

    Get PDF
    © 2017 Elsevier Ltd This paper describes computer-aided design of new anti-viral agents against Vaccinia virus (VACV) potentially acting as nucleic acid intercalators. Earlier obtained experimental data for DNA intercalation affinities and activities against Vesicular stomatitis virus (VSV) have been used to build, respectively, pharmacophore and QSAR models. These models were used for virtual screening of a database of 245 molecules generated around typical scaffolds of known DNA intercalators. This resulted in 12 hits which then were synthesized and tested for antiviral activity against VaV together with 43 compounds earlier studied against VSV. Two compounds displaying high antiviral activity against VaV and low cytotoxicity were selected for further antiviral activity investigations

    Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information

    Get PDF
    The Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling. The platform consists of two major subsystems: the database of experimental measurements and the modeling framework. A user-contributed database contains a set of tools for easy input, search and modification of thousands of records. The OCHEM database is based on the wiki principle and focuses primarily on the quality and verifiability of the data. The database is tightly integrated with the modeling framework, which supports all the steps required to create a predictive model: data search, calculation and selection of a vast variety of molecular descriptors, application of machine learning methods, validation, analysis of the model and assessment of the applicability domain. As compared to other similar systems, OCHEM is not intended to re-implement the existing tools or models but rather to invite the original authors to contribute their results, make them publicly available, share them with other users and to become members of the growing research community. Our intention is to make OCHEM a widely used platform to perform the QSPR/QSAR studies online and share it with other users on the Web. The ultimate goal of OCHEM is collecting all possible chemoinformatics tools within one simple, reliable and user-friendly resource. The OCHEM is free for web users and it is available online at http://www.ochem.eu
    corecore