7,219 research outputs found
The Influence of Quantum Critical Fluctuations of Circulating Current Order Parameters on the Normal State Properties of Cuprates
We study a model of the quantum critical point of cuprates associated with
the "circulating current" order parameter proposed by Varma. An effective
action of the order parameter in the quantum disordered phase is derived using
functional integral method, and the physical properties of the normal state are
studied based on the action. The results derived within the ladder
approximation indicate that the system is like Fermi liquid near the quantum
critical point and in disordered regime up to minor corrections. This implies
that the suggested marginal Fermi liquid behavior induced by the circulating
current fluctuations will come in from beyond the ladder diagrams.Comment: 7pages, 1 figure included in RevTex file. To appear in Phys. Rev.
Spectroscopic evidences of quantum critical charge fluctuations in cuprates
We calculate the optical conductivity in a clean system of quasiparticles
coupled to charge-ordering collective modes. The absorption induced by these
modes may produce an anomalous frequency and temperature dependence of
low-energy optical absorption in some cuprates. However, the coupling with
lattice degrees of freedom introduces a non-universal energy scale leading to
scaling violation in low-temperature optical conductivity.Comment: Proceedings of M2S 2006. To appear in Physica
A Theory of the Pseudogap State of the Cuprates
The phase diagram for a general model for Cuprates is derived in a mean-field
approximation. A phase violating time-reversal without breaking translational
symmetry is possible when both the ionic interactions and the local repulsions
are large compared to the energy difference between the Cu and O
single-particle levels. It ends at a quantum critical point as the hole or
electron doping is increased. Such a phase is necessarily accompanied by
singular forward scattering such that, in the stable phase, the density of
states at the chemical potential, projected to a particular point group
symmetry of the lattice is zero producing thereby an anisotropic gap in the
single-particle spectrum. It is suggested that this phase occupies the
"pseudogap" region of the phase diagram of the cuprates. The temperature
dependence of the single-particle spectra, the density of states, the specific
heat and the magnetic susceptibility are calculated with rather remarkable
correspondence with the experimental results. The importance of further direct
experimental verification of such a phase in resolving the principal issues in
the theory of the Cuprate phenomena is pointed out. To this end, some
predictions are provided.Comment: 41 pages, 8 figure
Heavy-Fermions in a Transition-Metal Compound:
The recent discovery of heavy-Fermion properties in Lithium Vanadate and the
enormous difference in its properties from the properties of Lithium Titanate
as well as of the manganite compounds raise some puzzling questions about
strongly correlated Fermions. These are disscussed as well as a solution to the
puzzles provided.Comment: late
Spontaneous time reversal symmetry breaking in the pseudogap state of high-Tc superconductors
When matter undergoes a phase transition from one state to another, usually a
change in symmetry is observed, as some of the symmetries exhibited are said to
be spontaneously broken. The superconducting phase transition in the underdoped
high-Tc superconductors is rather unusual, in that it is not a mean-field
transition as other superconducting transitions are. Instead, it is observed
that a pseudo-gap in the electronic excitation spectrum appears at temperatures
T* higher than Tc, while phase coherence, and superconductivity, are
established at Tc (Refs. 1, 2). One would then wish to understand if T* is just
a crossover, controlled by fluctuations in order which will set in at the lower
Tc (Refs. 3, 4), or whether some symmetry is spontaneously broken at T* (Refs.
5-10). Here, using angle-resolved photoemission with circularly polarized
light, we find that, in the pseudogap state, left-circularly polarized photons
give a different photocurrent than right-circularly polarized photons, and
therefore the state below T* is rather unusual, in that it breaks time reversal
symmetry11. This observation of a phase transition at T* provides the answer to
a major mystery of the phase diagram of the cuprates. The appearance of the
anomalies below T* must be related to the order parameter that sets in at this
characteristic temperature .Comment: 11 pages, 4 figure
- …