20 research outputs found

    Rainfall rate estimation over India using global precipitation measurement’s microwave imager datasets and different variants of fuzzy information system

    No full text
    Effective rain rate estimation using satellite-based measurement is imperative for many hydro-meteorological applications. With the recent advancement in satellite products and retrieving algorithms, rain rate estimations are continuously improving. This study provides a comparative performance appraisal of three hybrid machine learning algorithms namely Adaptive Neuro-Fuzzy Inference System (ANFIS), Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) and Hybrid Fuzzy Inference System (HYFIS) for rain rate estimation using the Global Precipitation Measurement (GPM)’s Microwave Imager (GMI) and ground-based Disdrometer data. The in situ sampling was conducted at four different locations (both land and ocean) across the Indian region and different statistical metrics were used to evaluate the performances of these models. The results showed that HYFIS algorithm has provided better rain rate estimation than ANFIS and DENFIS. The study endorses these neuro-fuzzy models for generating accurate precipitation products and can be considered as an alternative for future satellite retrieval algorithms

    Nonlinear optical properties of lead-free ferroelectric nanostructured perovskite

    No full text
    Lead-free perovskite materials with superior physical properties are currently explored for ferroelectric and optoelectronic applications. Ferroelectric materials that have large spontaneous polarization concomitantly possess large nonlinear optical response which is highly suitable for novel photonic applications. Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) is one such novel lead-free ferroelectric material with large piezoelectric response arising from existence of morphotropic phase boundary. Conventional sol-gel technique was adopted for synthesizing nanostructured BCZT (nano-BCZT) powder using citrate precursor route. X-ray powder diffraction confirmed the phase purity and high-resolution transmission electron microscopy (HRTEM) proved that the as-synthesized BCZT was indeed nanostructured. Supportively, Raman vibrational analysis was employed to validate the site occupancies of dopants and structural correlations when compared to undoped and pristine barium titanate. Nanostructured barium titanate is extensively studied as biomarkers in second harmonic generation (SHG) microscopy for bio-medical applications. In our current work, we have explored both second- and third-order nonlinear optical response of nano-BCZT. These were found to exhibit stronger SHG signal than potassium di-hydrogen phosphate (KDP) which is a well-known SHG standard. Subsequently, we also have investigated their third-order nonlinear optical properties using open aperture Z-scan technique at 532-nm excitation wavelength in the nanosecond regime. Nano-BCZT was found to exhibit strong two-photon absorption behavior. Such materials with multiphoton absorption behavior are favorable for nonlinear photonics devices such as optical limiters and contrast agents in nonlinear optical microscopy
    corecore