6,693 research outputs found

    Heavy-Fermions in a Transition-Metal Compound: LiV2O4LiV_2O_4

    Full text link
    The recent discovery of heavy-Fermion properties in Lithium Vanadate and the enormous difference in its properties from the properties of Lithium Titanate as well as of the manganite compounds raise some puzzling questions about strongly correlated Fermions. These are disscussed as well as a solution to the puzzles provided.Comment: late

    A Theory of the Pseudogap State of the Cuprates

    Full text link
    The phase diagram for a general model for Cuprates is derived in a mean-field approximation. A phase violating time-reversal without breaking translational symmetry is possible when both the ionic interactions and the local repulsions are large compared to the energy difference between the Cu and O single-particle levels. It ends at a quantum critical point as the hole or electron doping is increased. Such a phase is necessarily accompanied by singular forward scattering such that, in the stable phase, the density of states at the chemical potential, projected to a particular point group symmetry of the lattice is zero producing thereby an anisotropic gap in the single-particle spectrum. It is suggested that this phase occupies the "pseudogap" region of the phase diagram of the cuprates. The temperature dependence of the single-particle spectra, the density of states, the specific heat and the magnetic susceptibility are calculated with rather remarkable correspondence with the experimental results. The importance of further direct experimental verification of such a phase in resolving the principal issues in the theory of the Cuprate phenomena is pointed out. To this end, some predictions are provided.Comment: 41 pages, 8 figure

    On The Multichannel Kondo Model"

    Full text link
    A detailed and comprehensive study of the one-impurity multichannel Kondo model is presented. In the limit of a large number of conduction electron channels k1k \gg 1, the low energy fixed point is accessible to a renormalization group improved perturbative expansion in 1/k1/k. This straightforward approach enables us to examine the scaling, thermodynamics and dynamical response functions in great detail and make clear the following features: i) the criticality of the fixed point; ii) the universal non-integer degeneracy; iii) that the compensating spin cloud has the spatial extent of the order of one lattice spacing.Comment: 28 pages, REVTEX 2.0. Submitted to J. Phys.: Cond. Mat. Reference .bbl file is appended at the end. 5 figures in postscript files can be obtained at [email protected]. The filename is gan.figures.tar.z and it's compressed. You can uncompress it by using commands: "uncompress gan.figures.tar.z" and "tar xvf gan.figures.tar". UBC Preprin

    Effective Lorentz Force due to Small-angle Impurity Scattering: Magnetotransport in High-Tc Superconductors

    Full text link
    We show that a scattering rate which varies with angle around the Fermi surface has the same effect as a periodic Lorentz force on magnetotransport coefficients. This effect, together with the marginal Fermi liquid inelastic scattering rate gives a quantitative explanation of the temperature dependence and the magnitude of the observed Hall effect and magnetoresistance with just the measured zero-field resistivity as input.Comment: 4 pages, latex, one epsf figure included in text. Several revisions and corrections are included. Major conclusions are the sam

    Asymptotically exact solution of a local copper-oxide model

    Full text link
    We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities.Comment: 11 pages, 1 postcript figure is appended as self-extracting archive, Revtex 2.0, ICTP preprint 199

    Dispersion of the high-energy phonon modes in Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4

    Full text link
    The dispersion of the high-energy phonon modes in the electron doped high-temperature superconductor Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4 has been studied by inelastic neutron scattering. The frequencies of phonon modes with Cu-O bond-stretching character drop abruptly when going from the Brillouin zone center along the [100]-direction; this dispersion is qualitatively similar to observations in the hole-doped cuprates. We also find a softening of the bond-stretching modes along the [110]-direction but which is weaker and exhibits a sinusoidal dispersion. The phonon anomalies are discussed in comparison to hole-doped cuprate superconductors and other metallic perovskites

    Non-Fermi liquid behavior in an extended Anderson model

    Full text link
    An extended Anderson model, including screening channels (non-hybridizing, but interacting with the local orbit), is studied within the Anderson-Yuval approach, originally devised for the single-channel Kondo problem. By comparing the perturbation expansions of this model and a generalized resonant level model, the spin-spin correlation functions are calculated which show non-Fermi liquid exponent depending on the strength of the scattering potential. The relevance of this result to experiments in some heavy fermion systems is briefly discussed.Comment: REVTEX, 17 pages, no figures, to be published in Phys. Rev.

    The Anomalous Hall Effect in YBa2_2Cu3_3O7_7

    Full text link
    The temperature dependence of the normal state Hall effect and magnetoresistance in YBa2_2Cu3_3O7_7 is investigated using the Nearly Antiferromagnetic Fermi Liquid description of planar quasiparticles. We find that highly anisotropic scattering at different regions of the Fermi surface gives rise to the measured anomalous temperature dependence of the resistivity and Hall coefficient while yielding the universal temperature dependence of the Hall angle observed for both clean and dirty samples. This universality is shown to arise from the limited momentum transfers available for the anomalous, spin fluctuation scattering and is preserved for any system with strong antiferromagnetic correlations.Comment: REVTeX, 10 pages + 4 figures in a single (compressed/uuencoded) PostScript fil

    How do Fermi liquids get heavy and die?

    Full text link
    We discuss non-Fermi liquid and quantum critical behavior in heavy fermion materials, focussing on the mechanism by which the electron mass appears to diverge at the quantum critical point. We ask whether the basic mechanism for the transformation involves electron diffraction off a quantum critical spin density wave, or whether a break-down in the composite nature of the heavy electron takes place at the quantum critical point. We show that the Hall constant changes continously in the first scenario, but may ``jump'' discontinuously at a quantum critical point where the composite character of the electron quasiparticles changes.Comment: Revised version with many new references added. To appear as a topical review in Journal of Physics: Condensed Matter Physics. Two column version http://www.physics.rutgers.edu/~coleman/online/questions.ps.g
    corecore