3 research outputs found

    Brief Training to Modify the Breadth of Attention Influences the Generalisation of Fear

    Get PDF
    Background: Generalisation of fear from dangerous to safe stimuli is an important process associated with anxiety disorders. However, factors that contribute towards fear (over)-generalisation remain poorly understood. The present investigation explored how attentional breadth (global/holistic and local/analytic) influences fear generalisation and, whether people trained to attend in a global vs. local manner show more or less generalisation. Methods: Participants (N = 39) were shown stimuli which comprised of large ‘global’ letters and smaller ‘local’ letters (e.g. an F comprised of As) and they either had to identify the global or local letter. Participants were then conditioned to fear a face by pairing it with an aversive scream (75% reinforcement schedule). Perceptually similar, but safe, faces, were then shown. Self-reported fear levels and skin conductance responses were measured. Results: Compared to participants in Global group, participants in Local group demonstrated greater fear for dangerous stimulus (CS +) as well as perceptually similar safe stimuli. Conclusions: Participants trained to attend to stimuli in a local/analytical manner showed higher magnitude of fear acquisition and generalisation than participants trained to attend in a global/holistic way. Breadth of attentional focus can influence overall fear levels and fear generalisation and this can be manipulated via attentional training

    The road not taken: Common and distinct neural correlates of regret and relief

    No full text
    Humans anticipate and evaluate both obtained and counterfactual outcomes – outcomes that could have been had an alternate decision been taken – and experience associated emotions of regret and relief. Although many functional magnetic resonance imaging (fMRI) studies have examined the neural correlates of these emotions, there is substantial heterogeneity in their results. We conducted coordinate-based ALE and network-based ANM meta-analysis of fMRI studies of experienced regret and relief to examine commonalities and differences in their neural correlates. Regionally, we observed that the experience of both regret and relief was associated with greater activation in the right ventral striatum (VS), which is implicated in tracking reward prediction error. At the network level, regret and relief shared the reward-sensitive mesocorticolimbic network with preferential activation of the medial orbitofrontal cortex (mOFC) for regret processing and medial cingulate cortex (MCC) for relief processing. Our research identified shared and separable brain systems subserving regret and relief experience, which may inform the treatment of regret-related mood disorders

    Not all discounts are created equal: Regional activity and brain networks in temporal and effort discounting

    No full text
    Reward outcomes associated with costs like time delay and effort investment are generally discounted in decision-making. Standard economic models predict rewards associated with different types of costs are devalued in a similar manner. However, our review of rodent lesion studies indicated partial dissociations between brain regions supporting temporal- and effort-based decision-making. Another debate is whether options involving low and high costs are processed in different brain substrates (dual-system) or in the same regions (single-system). This research addressed these issues using coordinate-based, connectivity-based, and activation network-based meta-analyses to identify overlapping and separable neural systems supporting temporal (39 studies) and effort (20 studies) discounting. Coordinate-based activation likelihood estimation and resting-state connectivity analyses showed immediate-small reward and delayed-large reward choices engaged distinct regions with unique connectivity profiles, but their activation network mapping was found to engage the default mode network. For effort discounting, salience and sensorimotor networks supported low-effort choices, while the frontoparietal network supported high-effort choices. There was little overlap between the temporal and effort networks. Our findings underscore the importance of differentiating different types of costs in decision-making and understanding discounting at both regional and network levels
    corecore