96 research outputs found
KĂsĂ©rleti helyzetek Ă©s csoportok összehasonlĂtása Ăşj statisztikai mĂłdszerekkel = Comparison of experimental treatments and groups by means of new statistical methods
Kutatásaim fĹ‘ cĂ©lja: Ăşj statisztikai mĂłdszerek kidolgozása a pszicholĂłgiai kutatások számára összetartozĂł Ă©s fĂĽggetlen minták egy- Ă©s kĂ©tszempontos összehasonlĂtásainak kĂĽlönbözĹ‘ elrendezĂ©seiben. A legfontosabb eredmĂ©nyek: 1. Az osztĂłpont-elemzĂ©s mĂłdszerĂ©nek kidolgozása. Ezzel a mĂłdszerrel kĂ©t vagy több fĂĽggetlen minta esetĂ©n megbĂzhatĂłan kiderĂthetĹ‘, hogy van-e a fĂĽggĹ‘ változĂł Ă©rtĂ©kskálájának olyan pontja, amelyben a kĂ©t vagy több elmĂ©leti eloszlás közti kĂĽlönbsĂ©g koncentrálĂłdik, vagyis amelyben a fĂĽggĹ‘ változĂłt dichotomizálva a legĂ©lesebb kĂĽlönbsĂ©get tapasztaljuk a csoportok között. 2. SűrűsödĂ©spont-elemzĂ©s kidolgozása. Ezzel a mĂłdszerrel azonosĂthatĂłk egy minta azon szemĂ©lyei, akiknek megadott távolságmĂ©rtĂ©k alapján a legtöbb "szomszĂ©djuk" van. Egy klaszteranalĂzis után vĂ©grehajtott sűrűsödĂ©spont-elemzĂ©s segĂthet feltárni a klaszterek prototĂpusait, karakterisztikus alközpontjait. 3. ÉrvĂ©nyesen használhatĂł robusztus prĂłba megszerkesztĂ©se a kĂ©tszempontos fĂĽggetlen mintás varianciaanalĂzisben az interakciĂłs hatás tesztelĂ©sĂ©re. 4. Ăšj mĂłdszer kidolgozása kĂ©t kvantitatĂv változĂł közti nemlineáris összefĂĽggĂ©sek feltárására. 5. A KLASZTER szoftver kidolgozása, mellyel egyedi klasszifikáciĂłk Ă©s komplex mintázatfeltárĂł elemzĂ©ssorok egyaránt vĂ©grehajthatĂłk. | The main goal of the project: to develop new statistical methods for research in psychology in different arrangements of one-way and two-way layouts. Most important results are as follows: 1. Development of cutpoint analysis. By means of this method one can reveal in comparing one or more independent samples the special point where dichotomizing the quantitative dependent variable the groups can be discriminated most sharply. 2. Development of dense point analysis. This method reveals in a sample subjects having the greatest number of neighbors. If a control clustering variable is specified, the method reports the percentages of dense point neighborhoods falling into the different clusters for each explored dense point. 3. Construction of a valid robust procedure for testing the interaction effect in the layout of two-way independent sample ANOVA. 4. Development of a new method for exploring nonlinear relationships over the whole range of a quantitative variable by means of local correlations. 5. Development of statistical software (called KLASZTER) capable to perform simple classifications and complex series of pattern oriented analyses as well
How to Use Model-Based Cluster Analysis Efficiently in Person-Oriented Research
Model-based cluster analysis (MBCA) was created to automatize the often subjective model-selection procedure of traditional explorative clustering methods. It is a type of finite mixture modelling, assuming that the data come from a mixture of different subpopulations following given distributions, typically multivariate normal. In that case cluster analysis is the exploration of the underlying mixture structure. In MBCA finding the possible number of clusters and the best clustering model is a statistical model-selection problem, where the models with differing number and type of component distributions are compared. For fitting a certain model MBCA uses a likelihood based Bayesian Information Criterion (BIC) to evaluate its appropriateness and the model with the highest BIC value is accepted as the final solution. The aim of the present study is to investigate the adequacy of automatic model selection in MBCA using BIC, and suggested alternative methods, like the Integrated Completed Likelihood Criterion (ICL), or Baudry’s method. An additional aim is to refine these procedures by using so called quality coefficients (QCs), borrowed from methodological advances within the field of exploratory cluster analysis, to help in the choice of an appropriate cluster structure (CLS), and also to compare the efficiency of MBCA in identifying a theoretical CLS with those of various other clustering methods. The analyses are restricted to studying the performance of various procedures of the type described above for two classification situations, typical in person-oriented studies: (1) an example data set characterized by a perfect theoretical CLS with seven types (seven completely homogeneous clusters) was used to generate three data sets with varying degrees of measurement error added to the original values, and (2) three additional data sets based on another perfect theoretical CLS with four types. It was found that the automatic decision rarely led to an optimal solution. However, dropping solutions with irregular BIC curves, and using different QCs as an aid in choosing between different solutions generated by MBCA and by fusing close clusters, optimal solutions were achieved for the two classification situations studied. With this refined procedure the revealed cluster solutions of MBCA often proved to be at least as good as those of different hierarchical and k-center clustering methods. MBCA was definitely superior in identifying four-type CLS models. In identifying seven-type CLS models MBCA performed at a similar level as the best of other clustering methods (such as k-means) only when the reliability level of the input variables was high or moderate, otherwise it was slightly less efficient
Mediációs elemzések pszichológiai kutatásokban
Háttér és célkitűzések: A pszichológiai kutatásokban kiemelt fontosságú a változók közötti
kapcsolatok vizsgálata. A statisztika a korreláció és a regresszió módszerével áll az ilyen elem-
zések rendelkezésére. Ha kettőnél több (X, Y, …) változót vizsgálunk, egy X → Y predikciós
probléma során felmerülhet, hogy az X → Y hatásban van-e más változóknak számottevő
közvetĂtĹ‘, mediálĂł hatása. CikkĂĽnk ezzel kapcsolatban ismerteti a mediáciĂłs elemzĂ©s fogalmát, statisztikai hátterĂ©t, legegyszerűbb modelljeit, valamint vĂ©grehajtásának Ă©s ábrázolásának
egyszerű mĂłdját az ingyenes ROP-R, JASP Ă©s jamovi szoftver segĂtsĂ©gĂ©vel. A mediáciĂłs elemzĂ©s lĂ©nyegĂ©nek megĂ©rtĂ©sĂ©t a cikkben számos valĂłdi pszicholĂłgiai kutatásbĂłl vett illusztrálĂł
pĂ©lda könnyĂti me
Matematikai pszichológia / pszichológiai statisztika / mérés
A pszicholĂłgia matematikai alapokon nyugvĂł fejlesztĂ©se Magyarországon az elmĂşlt 30 Ă©vben elsĹ‘sorban három intĂ©zmĂ©nyhez köthetĹ‘, ezek: a DE, az ELTE Ă©s a KRE PszicholĂłgiai IntĂ©zete. A matematikai pszicholĂłgia hazai központja a DE PszicholĂłgiai IntĂ©zete, ahol az elmĂşlt Ă©vtizedekben jelentĹ‘s eredmĂ©nyeket Ă©rtek el a mĂ©rĂ©selmĂ©let Ă©s a strukturális egyenletek modelljeivel kapcsolatban. A pszicholĂłgiai statisztikán belĂĽl fi gyelemre mĂ©ltĂł, nemzetközi mĂ©rcĂ©vel mĂ©rve is kiemelkedĹ‘ hazai eredmĂ©nyek szĂĽlettek – több kutatĂłhelyhez kötĹ‘dve – a statisztikai prĂłbák kritikája, a bayesi statisztika, a paramĂ©teres prĂłbák Ă©s robusztus változataik megbĂzhatĂłsága, a rangsorolásos eljárások, az idĹ‘sorelemzĂ©s, valamint a klasszifi káciĂłs eljárások tĂ©maköreiben. Az elmĂşlt 30 Ă©vben a mĂ©rĂ©s, pszichometria tĂ©makörĂ©ben is szĂĽlettek kiemelkedĹ‘ hazai eredmĂ©nyek
A felnĹ‘tt kötĹ‘dĂ©s korszerű mĂ©rĂ©si lehetĹ‘sĂ©ge: A közvetlen kapcsolatok Ă©lmĂ©nyei — kapcsolati struktĂşrák (ECR-RS) kötĹ‘dĂ©si kĂ©rdĹ‘Ăv magyar adaptáciĂłja párkapcsolatban Ă©lĹ‘ felnĹ‘tt szemĂ©lyeknĂ©l
Jelen kutatás cĂ©lja az Ăşn. ECR-RS (Experiences in Close Relationships — Relationship Structures, Fraley, Heffernan, Vicary Ă©s Brumbaugh, 2011) kötĹ‘dĂ©si kĂ©rdĹ‘Ăv magyar adaptálása, mely számos eddig megoldatlan mĂłdszertani problĂ©mára ad adekvát választ. EgyrĂ©szt alkalmas egy-egy fontos szemĂ©lyhez (apa, anya, pár, barát) fűzĹ‘dĹ‘ kötĹ‘dĂ©s specifikus vizsgálatára. MásrĂ©szt az azonos tĂ©teleknek köszönhetĹ‘en a kĂĽlönbözĹ‘ kötĹ‘dĂ©si szemĂ©lyekkel kapcsolatos elkerĂĽlĂ©s Ă©s szorongás mĂ©rtĂ©ke könnyedĂ©n összehasonlĂthatĂłvá válik, hiszen a kĂ©rdĹ‘Ăv ugyanazokat a dimenziĂłkat mĂ©ri a 4 fontos szemĂ©llyel kapcsolatban. FelnĹ‘tt, párkapcsolatban Ă©lĹ‘ szemĂ©lyek mintáján (n=336) az ECR-RS jĂł megbĂzhatĂłsági mutatĂłkkal rendelkezik. A feltárĂł faktorelemzĂ©s a kötĹ‘dĂ©s kĂ©tfaktoros elkĂ©pzelĂ©sĂ©t támasztja alá (elkerĂĽlĂ©s Ă©s szorongás). A kĂ©rdĹ‘Ăv validitása megfelelĹ‘, a magasabb párkapcsolati elkerĂĽlĂ©s Ă©s szorongás alacsonyabb általános jĂłllĂ©t, párkapcsolati elĂ©gedettsĂ©g Ă©s párkapcsolati megkĂĽzdĂ©si erĹ‘forrás Ă©rtĂ©kekkel, valamint magasabb depressziĂł Ă©s párkapcsolati stressz Ă©rtĂ©kekkel jár egyĂĽtt. Az öt alapvonás csak mĂ©rsĂ©kelt kapcsolatot mutat a felnĹ‘tt kötĹ‘dĂ©ssel. A kĂĽlönbözĹ‘ szemĂ©lyekkel kapcsolatban mĂ©rt elkerĂĽlĂ©s Ă©s szorongás szintje szignifikáns eltĂ©rĂ©seket mutat: a számunkra fontos szemĂ©lyekhez kĂĽlönbözĹ‘kĂ©ppen kötĹ‘dĂĽnk, Ă©s ez eltĂ©rĹ‘ mĂłdon befolyásolja a jĂłllĂ©tet, illetve a párkapcsolat minĹ‘sĂ©gĂ©t. K-központĂş klaszterelemzĂ©s segĂtsĂ©gĂ©vel a kĂ©t dimenziĂł figyelembevĂ©telĂ©vel lĂ©nyegĂ©ben sikerĂĽlt azonosĂtani az ismert nĂ©gy kötĹ‘dĂ©si tĂpust is.
|
The aim of the present study was to explore the psychometric properties of the ECR-RS attachment questionnaire in a Hungarian adult sample. ECR-RS assesses two dimensions — attachment-related anxiety and avoidance – in four important domains (mother, father, romantic partner, and best friend), using the same 9 items. In a sample of adults who are currently involved in romantic relationship (n = 336), ECR-RS proved to be reliable. Exploratory factor analysis revealed a two-factor model in all 4 contexts. The convergent and discriminant validity of the questionnaire were found to be good. Avoidance and anxiety on partner domain correlated negatively with well being, satisfaction with partner, coping resources in romantic relationship, and positively with depressive symptoms and couple stress. The basic personality types (measured by the Big Five Inventory) showed moderate correlations with adult attachment dimensions. We found significant differences in anxiety and avoidance levels between the 4 relationship types. This result underlines the importance of assessing attachment in specific relationship types instead of measuring only general attachment orientations. In partner and friend domains we could identify the well known 4 attachment types with cluster analysis
Exploring types of parent attachment via the clustering modules of a new free statistical software, ROP-R
The aim of the paper is threefold: (1) to demonstrate the rich repertoire of clustering capabilities of a ROPstat and R-based new and free software, called ROP-R, by illustrating several analyses with real psychological data; (2) to show how well ROP-R works in tandem with ROPstat software in complex classification analyses; and (3) to explore some nontrivial types of parent attachment using the clustering modules of ROP-R. Four modules of ROP-R are available for performing cluster analyses (CAs), with several methods (e.g., divisive hierarchical CA, k-medoids CA, k-medians CA, model-based CA) not found in other user-friendly menu-driven software. In the paper, mother and father attachment data are used from a study with adolescents (Mirnics et al., 2021) to illustrate how the ROP-R software can be used to perform various CAs and evaluate the results using attractive graphs and useful tables. Comparing different clustering methods, it was found that both standard AHCA and k-means CA could discover a 7-type structure, which was also verified by the nonstandard k-medians CA. However, the nonstandard k-medoids CA and MBCA methods were not very effective in identifying a structure with an acceptable overall homogeneity. Nevertheless, they were able to identify some types through extremely homogeneous clusters
The Development of a Shortened Hungarian Version of the Savoring Beliefs Inventory
Background: The Savoring Beliefs Inventory (SBI) has been widely used to measure
attitudes towards savoring positive experiences. Aim: Our aim was to develop a short yet
reliable and valid form of the inventory for use in circumstances where the application of
the full form is not feasible. Methods: We used two separate samples in our cross-sectional
research. We used convenient and snowball sampling methods. One sample (n = 3.782,
males: 274, females: 3.485, gender not identified: 23, ages ranged from 18 to 86 years,
mean: 43.6 years, SD = 13.7 years) completed the original SBI, which consists of 24 items,
while the second (n = 825, males: 112, females: 713, ages ranged from 18 to 100, mean: 41.4
years, SD = 11.1 years) completed a shortened form, consisting of 10 items. In the second
study, participants also completed other well-being measures so that we could assess
external validity. Results: According to our results, the 10-item short form of the SBI has
sound psychometric properties that are comparable to those obtained using the full form.
Cronbach’s alpha values of initial scale = savoring via anticipation: 0.86, savoring the
moment: 0.84, savoring via reminiscence: 0.84; reduced scale = savoring via anticipation:
0.85, savoring the moment: 0.81, savoring via reminiscence: 0.81. The fit indices show that
the ten-item, 3-factor model was confirmed (RMSEA: 0.060, CI90: 0.049, pClose: 0.07, CFI:
0.966, TLI: 0.952, SRMR: 0.027). The external validity of the SBI (10) was also demonstrated.
Conclusion: The Short Savoring Beliefs Inventory has got appropriate psychometric
properties, therefore it can be used in future studies about a Hungarian population
- …