348 research outputs found

    Genetic diversity in Pinus remota (Pinaceae) populations of Northeast Mexico: evidences of historical demographic contraction

    Get PDF
    Métodos: El estudio se realizó en siete poblaciones representativas de su distribución natural en México, con muestras de acículas de 112 árboles analizadas con cinco microsatélites de núcleo. Los datos se evaluaron con parámetros de la genética de poblaciones y métodos de aproximación Bayesiana. Resultados clave: La heterocigosidad promedio esperada (He=0.557) fue más alta que la observada (Ho=0.375). Las poblaciones no se encuentran en equilibro Hardy-Weinberg, con una endogamia significativa (FIS=0.259) y tamaños efectivos reducidos (Ne entre 375-425); están estructuradas en tres grupos genéticos (FST=0.158), con valores altos del índice Mc (0.186-0.283), sugiriendo eventos de declinamiento demográfico ancestral (entre 11,910 y 23,820 años atrás), asociados con los cambios climáticos del Pleistoceno. Conclusiones: El estudio demuestra que P. remota contiene una variación genética considerable, pero estructurada espacialmente y asociada a cuellos de botella ancestrales. Además, se confirma que P. catarinae es su sinónimo. La especie ha sido capaz de subsistir y adaptarse a condiciones ambientales locales. Con este conocimiento se plantean estrategias para la conservación de las poblaciones remanentes de la especie.Background and Aims: The decrease and fragmentation of populations result in the loss of variation and increase in genetic differentiation. Pinus remota is an arboreal-shrubby species of restricted distribution with scattered and fragmented populations. The objectives of the present study were: to evaluate the levels of genetic variation, inbreeding and the effective size of the populations, to test the hypothesis of the existence of bottlenecks associated with the reduction of the genetic variation of the populations, and to analyze the genetic structure and its association with the geographic distribution of populations. Methods: The study was carried out in seven representative populations of their natural distribution in Mexico, by screening a total of 112 trees with five nuclear microsatellites. The data were evaluated with parameters of population genetics and Bayesian approach methods. Key results: The average expected heterozygosity (He=0.557) was higher than the observed heterozygosity (Ho=0.375). The populations are not in Hardy-Weinberg equilibrium, with significant inbreeding levels (FIS=0.259) and small effective sizes (Ne between 375-425). These are structured in three genetic groups (FST=0.158), with high values of the Mc index (0.186-0.283), suggesting ancestral demographic decline events (between 11,910 to 23,820 years ago), associated with the Pleistocene climate changes. Conclusions: The study showed that P. remota contains a considerable genetic variation, which is spatially structured and associated with ancestral bottlenecks. Moreover, it is confirmed that P. catarinae is its synonym. The species has been able to survive and adapt to local environmental conditions. With this knowledge conservation strategies for the remaining populations of the species are proposed

    Comparison of two phenotypical methods to segregate resistant and susceptible lambs to parasitic nematodes

    Get PDF
    The objective of this study was to compare two segregation methods to select resistant and susceptible female Pelibuey lambs infected naturally with gastrointestinal nematodes (GINs) in relation to their haematological and immunological response. For 6 months, faeces and blood samples were taken fortnightly from 40 grazing 5-month-old female lambs. The lambs were classified according to two methods using faecal egg count (FEC) as a phenotypical trait. In the first (reference) method (M3SE, n = 22), resistant (RES) lambs had FEC lower than the mean – 3 standard errors, the susceptible (SUS) lambs levels higher than + 3 standard errors(n = 10) and the intermediate (INT) lambs (n = 8) were categorised by having FECs between the two values. The second method (QUM) divided the population, using quartiles, into resistant (RES; 25%), intermediate (INT; 50%), and susceptible (SUS; 25%) lambs. The agreement between both methods was estimated using the Kappa index. The packed cell volume (PCV), total plasma protein (TPP) and peripheral eosinophils (EOS) were determined for each group. Serum was used to evaluate the IgA levels. PCV and TPP values were higher (P<0.01) in the RES lambs (31.5 ± 3.4 and 6.16 ± 0.5 g/dL by QUM, respectively, and 31.5 ± 3.9 and 6.24 ± 0.49 g/dL by M3SE, respectively) than the SUS lambs (28.1 ± 4.7 and 5.94 ± 0.5 g/d, respectively, by both methods). The EOS and IgA values increased with age. M3SE and QUM were in moderate agreement (Kappa = 0.43). We concluded that the two segregation methods allowed for the identification of the same female SUS lambs, but a greater number of animals were categorised phenotypically as resistant using the M3SE method. PCV and TPP can help to identify phenotypically resistant animals

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Lo glocal y el turismo. Nuevos paradigmas de interpretación.

    Get PDF
    El estudio del turismo se realiza desde múltiples escalas y enfoques, este libro aborda muchos temas que es necesario discutir desde diversas perspectivas; es el caso de la reflexión sobre la propia disciplina y sus conceptos, así como los asuntos específicos referidos al impacto territorial, los tipos de turismo, las cuestiones ambientales, el tema de la pobreza, la competitividad, las políticas públicas, el papel de las universidades, las áreas naturales protegidas, la sustentabilidad, la cultura, el desarrollo, la seguridad, todos temas centrales documentados y expuestos con originalidad y dominio del asunto. Lo multiescalar es básico para la comprensión del sistema turístico, sistema formado de procesos globales, regionales y locales. El eje de discusión del libro es lo glocal, esa interacción entre lo nacional y local con lo global

    Inflation and Dark Energy from spectroscopy at z > 2

    Get PDF

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV : mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore