4,981 research outputs found
Study of the electron trigger efficiency of the CMS Experiment using test beam data
A study of the electron identification and selection efficiency of the L1
Trigger algorithm has been performed using the combined ECAL/HCAL test beam
data. A detailed discussion of the electron isolation and its impact on the
selection efficiency is presented. The L1 electron algorithm is studied for
different beam energies and the results indicate that efficiencies of 98% or
more can be achieved for electrons with energies between 15 and 100 GeV. The
fraction of charged hadrons with energies from 3 up to 100 GeV rejected by the
L1 electron trigger algorithm is estimated to be larger than 93%.Comment: 22 pages, 14 figure
Population coding by globally coupled phase oscillators
A system of globally coupled phase oscillators subject to an external input
is considered as a simple model of neural circuits coding external stimulus.
The information coding efficiency of the system in its asynchronous state is
quantified using Fisher information. The effect of coupling and noise on the
information coding efficiency in the stationary state is analyzed. The
relaxation process of the system after the presentation of an external input is
also studied. It is found that the information coding efficiency exhibits a
large transient increase before the system relaxes to the final stationary
state.Comment: 7 pages, 9 figures, revised version, new figures added, to appear in
JPSJ Vol 75, No.
Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3 / YBa2Cu3O7 superlattices
We study the interplay between magnetism and superconductivity in high
quality YBa2Cu3O7 (YBCO) / La0.7Ca0.3MnO3(LCMO)superlattices. We find evidence
for the YBCO superconductivity depression in presence of the LCMO layers. We
show that due to its short coherence length superconductivity survives in the
YBCO down to much smaller thickness in presence of the magnetic layer than in
low Tc superconductors. We also find that for a fixed thickness of the
superconducting layer, superconductivity is depressed over a thickness interval
of the magnetic layer in the 100 nm range. This is a much longer length scale
than that predicted by the theory of ferromagnetic/superconducting proximity
effect.Comment: 10 pages + 5 figures, submitted to Phys. Rev.
Sensory neuron–derived NaV1.7 contributes to dorsal horn neuron excitability
Expression of the voltage-gated sodium channel NaV1.7 in sensory neurons is required for pain sensation. We examined the role of NaV1.7 in the dorsal horn of the spinal cord using an epitope-tagged NaV1.7 knock-in mouse. Immuno–electron microscopy showed the presence of NaV1.7 in dendrites of superficial dorsal horn neurons, despite the absence of mRNA. Rhizotomy of L5 afferent nerves lowered the levels of NaV1.7 in the dorsal horn. Peripheral nervous system–specific NaV1.7 null mutant mice showed central deficits, with lamina II dorsal horn tonic firing neurons more than halved and single spiking neurons more than doubled. NaV1.7 blocker PF05089771 diminished excitability in dorsal horn neurons but had no effect on NaV1.7 null mutant mice. These data demonstrate an unsuspected functional role of primary afferent neuron-generated NaV1.7 in dorsal horn neurons and an expression pattern that would not be predicted by transcriptomic analysis
SEOM clinical guideline in ovarian cancer (2020)
Despite remarkable advances in the knowledge of molecular biology and treatment, ovarian cancer remains the leading cause of death from gynecologic cancer. In the last decade, there have been important advances both in systemic and surgical treatment. However, there is no doubt that the incorporation of PARP inhibitors as maintenance after the response to platinum-based chemotherapy, first in recurrent disease and recently also in first line, will change the natural history of the disease. The objective of this guide is to summarize the current evidence for the diagnosis, treatment, and follow-up of ovarian cancer, and to provide evidence-based recommendations for clinical practice
Recommended from our members
Phase Separation of FUS is Modulated by Methylation State of Cation-Ď€ Interactions and Interaction with TNPO1
Reversible phase separation, which underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles, is in part driven by the intrinsically disordered low complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration, induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS, and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated, and how perturbations in these mechanisms can lead to disease
Inhibition of somatosensory mechanotransduction by annexin A6
Mechanically activated, slowly adapting currents in sensory neurons have been linked to noxious mechanosensation. The conotoxin NMB-1 (noxious mechanosensation blocker-1) blocks such currents and inhibits mechanical pain. Using a biotinylated form of NMB-1 in mass spectrometry analysis, we identified 67 binding proteins in sensory neurons and a sensory neuron-derived cell line, of which the top candidate was annexin A6, a membrane-associated calcium-binding protein. Annexin A6-deficient mice showed increased sensitivity to mechanical stimuli. Sensory neurons from these mice showed increased activity of the cation channel Piezo2, which mediates a rapidly adapting mechano-gated current linked to proprioception and touch, and a decrease in mechanically activated, slowly adapting currents. Conversely, overexpression of annexin A6 in sensory neurons inhibited rapidly adapting currents that were partially mediated by Piezo2. Furthermore, overexpression of annexin A6 in sensory neurons attenuated mechanical pain in a mouse model of osteoarthritis, a disease in which mechanically evoked pain is particularly problematic. These data suggest that annexin A6 can be exploited to inhibit chronic mechanical pain
- …