1,781 research outputs found

    The Planning Spectrum - One, Two, Three, Infinity

    Full text link
    Linear Temporal Logic (LTL) is widely used for defining conditions on the execution paths of dynamic systems. In the case of dynamic systems that allow for nondeterministic evolutions, one has to specify, along with an LTL formula f, which are the paths that are required to satisfy the formula. Two extreme cases are the universal interpretation A.f, which requires that the formula be satisfied for all execution paths, and the existential interpretation E.f, which requires that the formula be satisfied for some execution path. When LTL is applied to the definition of goals in planning problems on nondeterministic domains, these two extreme cases are too restrictive. It is often impossible to develop plans that achieve the goal in all the nondeterministic evolutions of a system, and it is too weak to require that the goal is satisfied by some execution. In this paper we explore alternative interpretations of an LTL formula that are between these extreme cases. We define a new language that permits an arbitrary combination of the A and E quantifiers, thus allowing, for instance, to require that each finite execution can be extended to an execution satisfying an LTL formula (AE.f), or that there is some finite execution whose extensions all satisfy an LTL formula (EA.f). We show that only eight of these combinations of path quantifiers are relevant, corresponding to an alternation of the quantifiers of length one (A and E), two (AE and EA), three (AEA and EAE), and infinity ((AE)* and (EA)*). We also present a planning algorithm for the new language that is based on an automata-theoretic approach, and study its complexity

    Solving parity games: Explicit vs symbolic

    Get PDF
    In this paper we provide a broad investigation of the symbolic approach for solving Parity Games. Specifically, we implement in a fresh tool, called, four symbolic algorithms to solve Parity Games and compare their performances to the corresponding explicit versions for different classes of games. By means of benchmarks, we show that for random games, even for constrained random games, explicit algorithms actually perform better than symbolic algorithms. The situation changes, however, for structured games, where symbolic algorithms seem to have the advantage. This suggests that when evaluating algorithms for parity-game solving, it would be useful to have real benchmarks and not only random benchmarks, as the common practice has been

    Robust sub-shot-noise measurement via Rabi-Josephson oscillations in bimodal Bose-Einstein condensates

    Full text link
    Mach-Zehnder atom interferometry requires hold-time phase-squeezing to attain readout accuracy below the standard quantum limit. This increases its sensitivity to phase-diffusion, restoring shot-noise scaling of the optimal signal-to-noise ratio, sos_o, in the presence of interactions. The contradiction between the preparations required for readout accuracy and robustness to interactions, is removed by monitoring Rabi-Josephson oscillations instead of relative-phase oscillations during signal acquisition. Optimizing sos_o with a Gaussian squeezed input, we find that hold-time number squeezing satisfies both demands and that sub-shot-noise scaling is retained even for strong interactions.Comment: 6 pages, 4 figure

    Parametric LTL on Markov Chains

    Full text link
    This paper is concerned with the verification of finite Markov chains against parametrized LTL (pLTL) formulas. In pLTL, the until-modality is equipped with a bound that contains variables; e.g., ◊≤x φ\Diamond_{\le x}\ \varphi asserts that φ\varphi holds within xx time steps, where xx is a variable on natural numbers. The central problem studied in this paper is to determine the set of parameter valuations V≺p(φ)V_{\prec p} (\varphi) for which the probability to satisfy pLTL-formula φ\varphi in a Markov chain meets a given threshold ≺p\prec p, where ≺\prec is a comparison on reals and pp a probability. As for pLTL determining the emptiness of V>0(φ)V_{> 0}(\varphi) is undecidable, we consider several logic fragments. We consider parametric reachability properties, a sub-logic of pLTL restricted to next and ◊≤x\Diamond_{\le x}, parametric B\"uchi properties and finally, a maximal subclass of pLTL for which emptiness of V>0(φ)V_{> 0}(\varphi) is decidable.Comment: TCS Track B 201

    Directional `superradiant' collisions: bosonic amplification of atom pairs emitted from an elongated Bose-Einstein condensate

    Full text link
    We study spontaneous directionality in the bosonic amplification of atom pairs emitted from an elongated Bose-Einstein condensate (BEC), an effect analogous to `superradiant' emission of atom-photon pairs. Using a simplified model, we make analytic predictions regarding directional effects for both atom-atom and atom-photon emission. These are confirmed by numerical mean-field simulations, demonstrating the the feasibility of nearly perfect directional emission along the condensate axis. The dependence of the emission angle on the pump strength for atom-atom pairs is significantly different than for atom-photon pairs
    • …
    corecore