22 research outputs found

    Computational paradigm for dynamic logic-gates in neuronal activity

    Full text link
    In 1943 McCulloch and Pitts suggested that the brain is composed of reliable logic-gates similar to the logic at the core of today's computers. This framework had a limited impact on neuroscience, since neurons exhibit far richer dynamics. Here we propose a new experimentally corroborated paradigm in which the truth tables of the brain's logic-gates are time dependent, i.e. dynamic logicgates (DLGs). The truth tables of the DLGs depend on the history of their activity and the stimulation frequencies of their input neurons. Our experimental results are based on a procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-scale network of cortical cells in-vitro. We demonstrate that the underlying biological mechanism is the unavoidable increase of neuronal response latencies to ongoing stimulations, which imposes a nonuniform gradual stretching of network delays. The limited experimental results are confirmed and extended by simulations and theoretical arguments based on identical neurons with a fixed increase of the neuronal response latency per evoked spike. We anticipate our results to lead to better understanding of the suitability of this computational paradigm to account for the brain's functionalities and will require the development of new systematic mathematical methods beyond the methods developed for traditional Boolean algebra.Comment: 32 pages, 14 figures, 1 tabl

    Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    Full text link
    The increasing number of recording electrodes enhances the capability of capturing the network's cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.Comment: 36 pages, 9 figure

    Chaotic and non-chaotic phases in experimental responses of a single neuron

    Full text link
    Consistency and predictability of brain functionalities depend on reproducible activity of a single neuron. We identify a reproducible non-chaotic neuronal phase where deviations between concave response latency profiles of a single neuron do not increase with the number of stimulations. A chaotic neuronal phase emerges at a transition to convex latency profiles which diverge exponentially, indicating irreproducible response timings. Our findings are supported by a quantitative mathematical framework and found robust to periodic and random stimulation patterns. In addition, these results put a bound on the neuronal temporal resolution which can be enhanced below a millisecond using neuronal chains.Comment: 6 pages, 4 figure

    Synthetic reverberating activity patterns embedded in networks of cortical neurons

    Full text link
    Synthetic reverberating activity patterns are experimentally generated by stimulation of a subset of neurons embedded in a spontaneously active network of cortical cells in-vitro. The neurons are artificially connected by means of conditional stimulation matrix, forming a synthetic local circuit with a predefined programmable connectivity and time-delays. Possible uses of this experimental design are demonstrated, analyzing the sensitivity of these deterministic activity patterns to transmission delays and to the nature of ongoing network dynamics.Comment: 8 pages, 5 figure

    An experimental evidence-based computational paradigm for new logic-gates in neuronal activity

    Full text link
    We propose a new experimentally corroborated paradigm in which the functionality of the brain's logic-gates depends on the history of their activity, e.g. an OR-gate that turns into a XOR-gate over time. Our results are based on an experimental procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-scale network of cortical cells in-vitro. The underlying biological mechanism is the unavoidable increase of neuronal response latency to ongoing stimulations, which imposes a non-uniform gradual stretching of network delays.Comment: 10 pages, 4 figures, 1 tabl

    Fast Reversible Learning based on Neurons functioning as Anisotropic Multiplex Hubs

    Full text link
    Neural networks are composed of neurons and synapses, which are responsible for learning in a slow adaptive dynamical process. Here we experimentally show that neurons act like independent anisotropic multiplex hubs, which relay and mute incoming signals following their input directions. Theoretically, the observed information routing enriches the computational capabilities of neurons by allowing, for instance, equalization among different information routes in the network, as well as high-frequency transmission of complex time-dependent signals constructed via several parallel routes. In addition, this kind of hubs adaptively eliminate very noisy neurons from the dynamics of the network, preventing masking of information transmission. The timescales for these features are several seconds at most, as opposed to the imprint of information by the synaptic plasticity, a process which exceeds minutes. Results open the horizon to the understanding of fast and adaptive learning realities in higher cognitive functionalities of the brain.Comment: 6 pages, 4 figure

    Broadband Macroscopic Cortical Oscillations Emerge from Intrinsic Neuronal Response Failures

    Get PDF
    Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which were extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism - the intrinsic stochastic neuronal response failures. These neuronal response failures, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives.Comment: 21 pages, 5 figure

    Sudden synchrony leaps accompanied by frequency multiplications in neuronal activity

    Get PDF
    A classical view of neural coding relies on temporal firing synchrony among functional groups of neurons; however the underlying mechanism remains an enigma. Here we experimentally demonstrate a mechanism where time-lags among neuronal spiking leap from several tens of milliseconds to nearly zero-lag synchrony. It also allows sudden leaps out of synchrony, hence forming short epochs of synchrony. Our results are based on an experimental procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-scale network of cortical cells in vitro and are corroborated by simulations of neuronal populations. The underlying biological mechanisms are the unavoidable increase of the neuronal response latency to ongoing stimulations and temporal or spatial summation required to generate evoked spikes. These sudden leaps in and out of synchrony may be accompanied by multiplications of the neuronal firing frequency, hence offering reliable information-bearing indicators which may bridge between the two principal neuronal coding paradigms.Comment: 23 pages, 3 figure
    corecore