14 research outputs found

    Considerations in selecting postoperative analgesia for pregnant sheep following fetal instrumentation surgery

    Get PDF
    Abstract not availableTamara J. Varcoe, Jack R.T. Darby, Kathryn L. Gatford, Stacey L. Holman, Pearl Cheung, Mary J. Berry, Michael D. Wiese and Janna L. Morriso

    Fetal cardiovascular response to acute hypoxia during maternal anesthesia

    Get PDF
    Preclinical imaging studies of fetal hemodynamics require anesthesia to immobilize the animal. This may induce cardiovascular depression and confound measures under investigation. We compared the impact of four anesthetic regimes upon maternal and fetal blood gas and hemodynamics during baseline periods of normoxia, and in response to an acute hypoxic challenge in pregnant sheep. Merino ewes were surgically prepared with maternal and fetal vascular catheters and a fetal femoral artery flow probe at 105–109 days gestation. At 110–120 days gestation, ewes were anesthetized with either isoflurane (1.6%), isoflurane (0.8%) plus ketamine (3.6 mg·kg−1·h−1), ketamine (12.6 mg·kg−1·h−1) plus midazolam (0.78 mg·kg−1·h−1), propofol (30 mg·kg−1·h−1), or remained conscious. Following 60 min of baseline recording, nitrogen was administered directly into the maternal trachea to displace oxygen and induce maternal and thus fetal hypoxemia. During normoxia, maternal PaO2 was ~30 mmHg lower in anesthetized ewes compared to conscious controls, regardless of the type of anesthesia (p .05), but heart rate was 32 ± 8 bpm lower in fetuses from ewes administered isoflurane (p = .044). During maternal hypoxia, fetal MAP increased, and peripheral blood flow decreased in all fetuses except those administered propofol (p < .05). Unexpectedly, hypoxemia also induced fetal tachycardia regardless of the anesthetic regime (p < .05). These results indicate that despite maternal anesthesia, the fetus can mount a cardiovascular response to acute hypoxia by increasing blood pressure and reducing peripheral blood flow, although the heart rate response may differ from when no anesthesia is present.Tamara J. Varcoe, Jack R. T. Darby, Stacey L. Holman, Emma L. Bradshaw, Tim Kuchel, Lewis Vaughan ... et al

    Cardiorespiratory consequences of intrauterine growth restriction: influence of timing, severity and duration of hypoxaemia

    Full text link
    At birth, weight of the neonate is used as a marker of the 9-month journey as a fetus. Those neonates born less than the 10th centile for their gestational age are at risk of being intrauterine growth restricted. However, this depends on their genetic potential for growth and the intrauterine environment in which they grew. Alterations in the supply of oxygen and nutrients to the fetus will decrease fetal growth, but these alterations occur due to a range of causes that are maternal, placental or fetal in nature. Consequently, IUGR neonates are a heterogeneous population. For this reason, it is likely that these neonates will respond differently to interventions compared not only to normally grown fetuses, but also to other neonates that are IUGR but have travelled a different path to get there. Thus, a range of models of IUGR should be studied to determine the effects of IUGR on the development and function of the heart and lung and subsequently the impact of interventions to improve development of these organs. Here we focus on a range of models of IUGR caused by manipulation of the maternal, placental or fetal environment on cardiorespiratory outcomes.Jack R.T.Darby, Tamara J.Varcoe, Sandra Orgeig, Janna L.Morriso

    The reliance on α‐adrenergic receptor stimuli for blood pressure regulation in the chronically hypoxaemic fetus is not dependent on post‐ganglionic activation

    Full text link
    Key points: Chronic hypoxaemia is associated with intrauterine growth restriction (IUGR) and a predisposition to the development of hypertension in adult life. IUGR fetuses exhibit a greater reliance on α-adrenergic activation for blood pressure regulation. The fetal blood pressure response to post-ganglionic blockade is not different between control and IUGR fetuses. The decrease in mean arterial pressure is greater in the IUGR sheep fetus after α-adrenergic receptor blockade at the level of the vasculature and this is inversely related to fetal urn:x-wiley:00223751:media:tjp14494:tjp14494-math-0001. The increased reliance that the IUGR fetus has on α-adrenergic activation for maintenance of mean arterial pressure is not a result of increased post-ganglionic sympathetic activation. Abstract: Intrauterine growth restriction (IUGR) is associated with an increased risk of cardiovascular disease in adult life. Placental restriction (PR) in sheep results in chronic hypoxaemia and early onset IUGR with increased circulating plasma noradrenaline concentrations. These IUGR fetuses exhibit a greater decrease in mean arterial pressure (MAP) during α-adrenergic blockade. We aimed to determine the role of post-ganglionic sympathetic activation with respect to regulating MAP in IUGR fetal sheep. PR was induced by carunclectomy surgery prior to conception. Fetal vascular catheterization was performed at 110–126 days gestational age (GA) (term, 150 days) in nine control and seven PR-IUGR fetuses. The fetal blood pressure response to both a post-ganglionic and an α-adrenergic receptor blocker was assessed at 116–120 days GA and/or 129–131 days GA. The effect of both post ganglionic and α-adrenergic blockade on fetal blood pressure was then compared between control and IUGR fetuses at both GAs. There was no difference in the effect of post-ganglionic blockade on MAP in control and IUGR fetal sheep at either 116–120 days GA or 129–131 days GA. α-adrenergic receptor blockade decreased MAP to the same extent in both control and IUGR fetuses at 116–120 days GA. At 129–131 days GA, the drop in MAP in response to α-adrenergic receptor blockade was greater in IUGR fetuses than controls. There was a significant inverse relationship between the drop in MAP in response to α-adrenergic receptor blockade at both GAs with fetal urn:x-wiley:00223751:media:tjp14494:tjp14494-math-0002. Thus, the increased dependence on α-adrenergic activation for blood pressure regulation in the chronically hypoxaemic IUGR fetus is not a result of increased post-ganglionic sympathetic activation.Jack R. T. Darby, Tamara J. Varcoe, Stacey L. Holman, I. Caroline McMillen, Janna L. Morriso

    Effects of chronic agomelatine administration on the expression of a panel of genes in various brain areas of rats

    Full text link
    Presentation P.2.d.019T.J. Varcoe, M. Salkeld, E. Mocaer, L. Seguin, D.J. Kennawa

    The impact of intrauterine growth restriction on cytochrome P450 enzyme expression and activity

    Full text link
    With the increased prevalence of non-communicable disease and availability of medications to treat these and other conditions, a pregnancy free from prescribed medication exposure is rare. Up to 99% of women take at least one medication during pregnancy. These medications can be divided into those used to improve maternal health and wellbeing (e.g., analgesics, antidepressants, antidiabetics, antiasthmatics), and those used to promote the baby's wellbeing in either fetal (e.g., anti-arrhythmics) or postnatal life (e.g., antenatal glucocorticoids). These medications are needed for pre-existing or coincidental illnesses in the mother, maternal conditions induced by the pregnancy itself through to conditions that arise in the fetus or that will be encountered by the newborn. Thus, medications administered to the mother may be used to treat the mother, the fetus or both. Metabolism of medications is regulated by a range of physiological processes that change during pregnancy. Other pathological processes such as placental insufficiency can in turn have both immediate and lifelong adverse health consequences for babies. Individuals born growth restricted are more likely to require medications but may also have an altered ability to metabolise these medications in fetal and postnatal life. This review aims to determine the effect of suboptimal fetal growth on the fetal expression of the drug metabolising enzymes (DMEs) that convert medications into active or inactive metabolites, and the transporters that remove both these medications and their metabolites from the fetal compartment.Grace M. McBride, Michael D. Wiese, Jia Yin Soo, Jack R.T. Darby, Mary J. Berry, Tamara J. Varcoe, Janna L. Morriso

    Simulated shift work during pregnancy does not impair progeny metabolic outcomes in sheep

    Full text link
    Disrupted maternal circadian rhythms, such as those experienced during shift work, are associated with impaired progeny metabolism in rodents. The effects of disrupted maternal circadian rhythms on progeny metabolism have not been assessed in altricial, non-litter bearing species. We therefore assessed postnatal growth from birth to adulthood, and body composition, glucose tolerance, insulin secretion and insulin sensitivity in pre-pubertal and young adult progeny of sheep exposed to control conditions (CON: 10 males, 10 females) or to a simulated shift work (SSW) protocol for the first 1/3 (SSW0-7: 11 males, 9 females), the first 2/3 (SSW0-14: 8 males, 11 females), or all (SSW0-21: 8 males, 13 females) of pregnancy. Progeny growth did not differ between maternal treatments. In pre-pubertal progeny (12-14 weeks of age), adiposity, glucose tolerance and insulin secretion during an intravenous glucose tolerance test and insulin sensitivity did not differ between maternal treatments. Similarly, in young adult progeny (12-14 months of age), food intake, adiposity and glucose tolerance did not differ between maternal treatments. At this age, however, insulin secretion in response to a glucose bolus was 30% lower in female progeny in the combined SSW groups compared to control females (P = 0.031), and insulin sensitivity of SSW0-21 singleton females was 236% that of CON singleton female progeny (P = 0.025). At least in this model, maternal SSW does not impair progeny metabolic health, with some evidence of greater insulin action in female young adult progeny.Kathryn L. Gatford, David J. Kennaway, Hong Liu, Christopher G. Schultz, Amy L. Wooldridge, Timothy R. Kuchel and Tamara J. Varco

    Hepatic cytochrome P450 function is reduced by life-long Western diet consumption in guinea pig independent of birth weight

    Full text link
    Introduction: Non-alcoholic fatty liver disease (NAFLD) is characterised by accumulation of triglycerides and cholesterol within the liver and dysregulation of specific hepatic cytochrome P450 (CYPs) activity. CYPs are involved in the metabolism of endogenous and exogenous chemicals. Hepatic CYP activity is dysregulated in human studies and animal models of a Western diet (WD) or low birth weight (LBW) independently, but the additive effects of LBW and postnatal WD consumption are unknown. As such, the aim of this study was to determine the independent and combined effect of birthweight and postnatal diet on hepatic CYP activity in a guinea pig model. Methods: LBW was generated via uterine artery ablation at mid gestation (term = 70 days gestation). Normal birthweight (NBW) and LBW pups were allocated either a control diet (CD) or WD at weaning. After 4 months of dietary intervention, guinea pigs were humanely killed, and liver tissue collected for biochemical and functional hepatic CYP activity analyses. Results: Independent of birthweight, functional activity of CYP3A was significantly reduced in female and male WD compared to CD animals (female, P < 0.0001; male, P = 0.004). Likewise, CYP1A2 activity was significantly reduced in male WD compared to CD animals (P = 0.020) but this same reduction was not observed in females. Conclusion: Diet, but not birthweight, significantly altered hepatic CYP activity in both sexes, and the effect of diet appeared to be greater in males. These findings may have clinical implications for the management of NAFLD and associated co-morbidities between the sexes.Michael D. Wiese, Ashley S. Meakin, Tamara J. Varcoe, Jack R.T. Darby, Ousseynou Sarr, Patti Kiser ... et al

    Importance of Balancing Membrane and Electrode Water in Anion Exchange Membrane Fuel Cells

    Get PDF
    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm−2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomerpowder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points
    corecore