579 research outputs found

    Spatial Resolution of Double-Sided Silicon Microstrip Detectors for the PAMELA Apparatus

    Full text link
    The PAMELA apparatus has been assembled and it is ready to be launched in a satellite mission to study mainly the antiparticle component of cosmic rays. In this paper the performances obtained for the silicon microstrip detectors used in the magnetic spectrometer are presented. This subdetector reconstructs the curvature of a charged particle in the magnetic field produced by a permanent magnet and consequently determines momentum and charge sign, thanks to a very good accuracy in the position measurements (better than 3 um in the bending coordinate). A complete simulation of the silicon microstrip detectors has been developed in order to investigate in great detail the sensor's characteristics. Simulated events have been then compared with data gathered from minimum ionizing particle (MIP) beams during the last years in order to tune free parameters of the simulation. Finally some either widely used or original position finding algorithms, designed for such kind of detectors, have been applied to events with different incidence angles. As a result of the analysis, a method of impact point reconstruction can be chosen, depending on both the particle's incidence angle and the cluster multiplicity, so as to maximize the capability of the spectrometer in antiparticle tagging.Comment: 28 pages, 18 figures, submitted to Nuclear Instruments and Methods in Physics Research

    First flight data from the PAMELA spectrometer

    Get PDF
    Abstract PAMELA is a satellite-borne experiment designed to study charged particles in the cosmic radiation, optimized in particular for antimatter components search. The experiment is mounted on the Resurs DK1 satellite that was launched on June 15th 2006 from Baikonur cosmodrome and is now collecting data from a semi-polar elliptical orbit around the Earth. The core of the PAMELA apparatus is a magnetic spectrometer, designed to determine precisely the rigidity and the absolute charge of particles crossing the detector. The tracking system is composed of six planes of silicon microstrip detectors dipped in an almost uniform magnetic field generated by a permanent magnet made of an Nd–Fe–B alloy. Some preliminary analysis about the spectrometer's performances, made using data collected since July 2006 till June 2007, are here reviewed

    An innovative approach to compact calorimetry in space, NEUCAL

    Get PDF
    Abstract Neutron emission during the development of hadronic showers can be used to discriminate between electromagnetic and hadronic interacting particles impinging a calorimeter. A neutron detector based on a high efficiency 'active moderator' is presented and its performance is evaluated with the aid of Monte Carlo simulation

    CaloCube: a novel calorimeter for high-energy cosmic rays in space

    Get PDF
    In order to extend the direct observation of high-energy cosmic rays up to the PeV region, highly performing calorimeters with large geometrical acceptance and high energy resolution are required. Within the constraint of the total mass of the apparatus, crucial for a space mission, the calorimeters must be optimized with respect to their geometrical acceptance, granularity and absorption depth. CaloCube is a homogeneous calorimeter with cubic geometry, to maximise the acceptance being sensitive to particles from every direction in space; granularity is obtained by relying on small cubic scintillating crystals as active elements. Different scintillating materials have been studied. The crystal sizes and spacing among them have been optimized with respect to the energy resolution. A prototype, based on CsI(Tl) cubic crystals, has been constructed and tested with particle beams. Some results of tests with different beams at CERN are presented.Comment: Seven pages, seven pictures. Proceedings of INSTR17 Novosibirs

    Two years of flight of the Pamela experiment: results and perspectives

    Full text link
    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antinuclei with a precision of the order of 10810^{-8}). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15th15^{th} 2006 in a 350×600km350\times 600 km orbit with an inclination of 70 degrees. In this work we describe the scientific objectives and the performance of PAMELA in its first two years of operation. Data on protons of trapped, secondary and galactic nature - as well as measurements of the December 13th13^{th} 2006 Solar Particle Event - are also provided.Comment: To appear on J. Phys. Soc. Jpn. as part of the proceedings of the International Workshop on Advances in Cosmic Ray Science March, 17-19, 2008 Waseda University, Shinjuku, Tokyo, Japa

    Status of the PAMELA silicon tracker

    Get PDF
    PAMELA is a composite particle detector which will be launched during the first half of 2006 on board the Russian satellite Resurs DK-1 from Baikonur cosmodrome in Kazakhstan. This experiment is mainly conceived for the study of cosmic-ray antiparticles and for the search for light antinuclei, but other issues related to the cosmic-ray physics will be investigated. In this work the structure of the whole apparatus is shortly discussed with particular attention to the magnetic spectrometer, which has been designed and built in Firenze

    A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation

    Full text link
    A new measurement of the cosmic ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a ten-fold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g. dark matter particle annihilations.Comment: 10 pages, 4 figures, 1 tabl

    The magnetic spectrometer of the PAMELA satellite experiment

    Get PDF
    In this paper, we describe in detail the design and the construction of the magnetic spectrometer of the PAMELA experiment, that will be launched during 2003 to do a precise measurement of the energy spectra of the antimatter components in cosmic rays. This paper will mainly focus on the detailed description of the tracking system and on the solutions adopted to deal with the technical challenges that are required to build a very precise detector to be used in the hostile space environment

    The silicon microstrip detectors of the PAMELA experiment: simulation and test results

    Get PDF
    Abstract The PAMELA detector will fly at the beginning of 2004 on board the Russian satellite Resurs–DK for a 3-year mission designed to study mainly antiparticles in cosmic rays. The core of the apparatus is a magnetic spectrometer in which silicon microstrip detectors are employed. A dedicated simulation study, tuned on beam test data, is presented: it allows to determine the best position finding algorithm for different incidence angles
    corecore