707 research outputs found

    Indirect biomass estimations in Collembola

    Get PDF
    We propose coefficients for regressions relating dry weight to body or tergite length in Folsomia candida, Entomobrya schoetti, Sminthurus viridis, and Hypogastrura vernalis (Collembola). Measurements were made on large batches of preserved, identified specimens. Batches were dessicated completely by critical-point drying and weighed. We compare our data with other published models and critically review the literature, finding questionable records

    Thermal tolerance, climatic variability and latitude

    Get PDF
    The greater latitudinal extents of occurrence of species towards higher latitudes has been attributed to the broadening of physiological tolerances with latitude as a result of increases in climatic variation. While there is some support for such patterns in climate, the physiological tolerances of species across large latitudinal gradients have seldom been assessed. Here we report findings for insects based on published upper and lower lethal temperature data. The upper thermal limits show little geographical variation. In contrast, the lower bounds of supercooling points and lower lethal temperatures do indeed decline with latitude. However, this is not the case for the upper bounds, leading to an increase in the variation in lower lethal limits with latitude. These results provide some support for the physiological tolerance assumption associated with Rapoport's rule, but highlight the need for coupled data on species tolerances and range size

    AMBER/VLTI high spectral resolution observations of the Brγ\gamma emitting region in HD 98922. A compact disc wind launched from the inner disc region

    Get PDF
    We analyse the main physical parameters and the circumstellar environment of the young Herbig Be star HD 98922. We present AMBER/VLTI high spectral resolution (R =12000) interferometric observations across the Brγ\gamma line, accompanied by UVES high-resolution spectroscopy and SINFONI-AO assisted near-infrared integral field spectroscopic data. To interpret our observations, we develop a magneto-centrifugally driven disc-wind model. Our analysis of the UVES spectrum shows that HD 98922 is a young (~5x10^5 yr) Herbig Be star (SpT=B9V), located at a distance of 440(+60-50) pc, with a mass accretion rate of ~9+/-3x10^(-7) M_sun yr^(-1). SINFONI K-band AO-assisted imaging shows a spatially resolved circumstellar disc-like region (~140 AU in diameter) with asymmetric brightness distribution. Our AMBER/VLTI UT observations indicate that the Brγ\gamma emitting region (radius ~0.31+/-0.04 AU) is smaller than the continuum emitting region (inner dust radius ~0.7+/-0.2 AU), showing significant non-zero V-shaped differential phases (i.e. non S-shaped, as expected for a rotating disc). The value of the continuum-corrected pure Brγ\gamma line visibility at the longest baseline (89 m) is ~0.8+/-0.1, i.e. the Brγ\gamma emitting region is partially resolved. Our modelling suggests that the observed Brγ\gamma line-emitting region mainly originates from a disc wind with a half opening angle of 30deg, and with a mass-loss rate of ~2x10(-7) M_sun yr^(-1). The observed V-shaped differential phases are reliably reproduced by combining a simple asymmetric continuum disc model with our Brγ\gamma disc-wind model. The Brγ\gamma emission of HD 98922 can be modelled with a disc wind that is able to approximately reproduce all interferometric observations if we assume that the intensity distribution of the dust continuum disc is asymmetric.Comment: Accepted for publication on Astronomy \& Astrophysics. High resolution figures published on the main journal (see Astronomy & Astrophysics: Forthcoming) or at www.researchgate.net/profile/Alessio_Caratti_o_Garatti/publication

    Possible detection of phase changes from the non-transiting planet HD 46375b by CoRoT

    Full text link
    The present work deals with the detection of phase changes in an exoplanetary system. HD 46375 is a solar analog known to host a non-transiting Saturn-mass exoplanet with a 3.0236 day period. It was observed by the CoRoT satellite for 34 days during the fall of 2008. We attempt to identify at optical wavelengths, the changing phases of the planet as it orbits its star. We then try to improve the star model by means of a seismic analysis of the same light curve and the use of ground-based spectropolarimetric observations. The data analysis relies on the Fourier spectrum and the folding of the time series. We find evidence of a sinusoidal signal compatible in terms of both amplitude and phase with light reflected by the planet. Its relative amplitude is Delta Fp/F* = [13.0, 26.8] ppm, implying an albedo A=[0.16, 0.33] or a dayside visible brightness temperature Tb ~ [1880,2030] K by assuming a radius R=1.1 R_Jup and an inclination i=45 deg. Its orbital phase differs from that of the radial-velocity signal by at most 2 sigma_RV. However, the tiny planetary signal is strongly blended by another signal, which we attribute to a telluric signal with a 1 day period. We show that this signal is suppressed, but not eliminated, when using the time series for HD 46179 from the same CoRoT run as a reference. This detection of reflected light from a non-transiting planet should be confirmable with a longer CoRoT observation of the same field. In any case, it demonstrates that non-transiting planets can be characterized using ultra-precise photometric lightcurves with present-day observations by CoRoT and Kepler. The combined detection of solar-type oscillations on the same targets (Gaulme et al. 2010a) highlights the overlap between exoplanetary science and asteroseismology and shows the high potential of a mission such as Plato.Comment: 4 pages, 6 figure

    HD 46375: seismic and spectropolarimetric analysis of a young Sun hosting a Saturn-like planet

    Full text link
    HD 46375 is known to host a Saturn-like exoplanet orbiting at 0.04 AU from its host star. Stellar light reflected by the planet was tentatively identified in the 34-day CoRoT run acquired in October-November 2008. We constrain the properties of the magnetic field of HD 46375 based on spectropolarimetric observations with the NARVAL spectrograph at the Pic du Midi observatory. In addition, we use a high-resolution NARVAL flux spectrum to contrain the atmospheric parameters. With these constraints, we perform an asteroseismic analysis and modelling of HD 46375 using the frequencies extracted from the CoRoT light curve. We used Zeeman Doppler imaging to reconstruct the magnetic map of the stellar surface. In the spectroscopic analysis we fitted isolated lines using 1D LTE atmosphere models. This analysis was used to constrain the effective temperature, surface gravity, and chemical composition of the star. To extract information about the p-mode oscillations, we used a technique based on the envelope autocorrelation function (EACF). From the Zeeman Doppler imaging observations, we observe a magnetic field of ~5 gauss. From the spectral analysis, HD 46375 is inferred to be an unevolved K0 type star with high metallicity [Fe/H]=+0.39. Owing to the relative faintness of the star (m_hip=8.05), the signal-to-noise ratio is too low to identify individual modes. However, we measure the p-mode excess power and large separation Delta nu_0=153.0 +/- 0.7 muHz. We are able do constrain the fundamental parameters of the star thanks to spectrometric and seismic analyses. We conclude that HD 46375 is similar to a young version of Alpha-CenB. This work is of special interest because of its combination of exoplanetary science and asteroseismology, which are the subjects of the current Kepler mission and the proposed PLATO mission.Comment: Accepted in Astronomy & Astrophysics. 8 pages, 9 figure

    A 3D view of the outflow in the Orion Molecular Cloud 1 (OMC-1)

    Full text link
    The fast outflow emerging from a region associated with massive star formation in the Orion Molecular Cloud 1 (OMC-1), located behind the Orion Nebula, appears to have been set in motion by an explosive event. Here we study the structure and dynamics of outflows in OMC-1. We combine radial velocity and proper motion data for near-IR emission of molecular hydrogen to obtain the first 3-dimensional (3D) structure of the OMC-1 outflow. Our work illustrates a new diagnostic tool for studies of star formation that will be exploited in the near future with the advent of high spatial resolution spectro-imaging in particular with data from the Atacama Large Millimeter Array (ALMA). We use published radial and proper motion velocities obtained from the shock-excited vibrational emission in the H2 v=1-0 S(1) line at 2.122 μ\mum obtained with the GriF instrument on the Canada-France-Hawaii Telescope, the Apache Point Observatory, the Anglo-Australian Observatory and the Subaru Telescope. These data give the 3D velocity of ejecta yielding a 3D reconstruction of the outflows. This allows one to view the material from different vantage points in space giving considerable insight into the geometry. Our analysis indicates that the ejection occurred <720 years ago from a distorted ring-like structure of ~15" (6000 AU) in diameter centered on the proposed point of close encounter of the stars BN, source I and maybe also source n. We propose a simple model involving curvature of shock trajectories in magnetic fields through which the origin of the explosion and the centre defined by extrapolated proper motions of BN, I and n may be brought into spatial coincidence.Comment: Accepted for publication in Astronomy and Astrophysics (A&A), 12 pages, 9 figure

    First AMBER/VLTI observations of hot massive stars

    Get PDF
    AMBER is the first near infrared focal instrument of the VLTI. It combines three telescopes and produces spectrally resolved interferometric measures. This paper discusses some preliminary results of the first scientific observations of AMBER with three Unit Telescopes at medium (1500) and high (12000) spectral resolution. We derive a first set of constraints on the structure of the circumstellar material around the Wolf Rayet Gamma2 Velorum and the LBV Eta Carinae
    corecore