54 research outputs found
Whole scalp resting state EEG of oscillatory brain activity shows no parametric relationship with psychoacoustic and psychosocial assessment of tinnitus: a repeated measures study
Tinnitus is a perception of sound that can occur in the absence of an external stimulus. A brief review of electroencephalography (EEG) and magnetoencephalography (MEG) literature demonstrates that there is no clear relationship between tinnitus presence and frequency band power in whole scalp or source oscillatory activity. Yet a preconception persists that such a relationship exists and that resting state EEG could be utilised as an outcome measure for clinical trials of tinnitus interventions, e.g. as a neurophysiological marker of therapeutic benefit. To address this issue, we first examined the test-retest correlation of EEG band power measures in tinnitus patients (n ¼ 42). Second we examined the evidence for a parametric relationship between numerous commonly used tinnitus variables (psychoacoustic and psychosocial) and whole scalp EEG power spectra, directly and after applying factor reduction techniques. Test-retest correlation for both EEG band power measures and tinnitus variables were high. Yet we found no relationship between whole scalp EEG band powers and psychoacoustic or psychosocial variables. We conclude from these data that resting state whole scalp EEG should not be used as a biomarker for tinnitus and that greater caution should be exercised in regard to reporting of findings to avoid confirmation bias. The data was collected during a randomised controlled trial registered at ClinicalTrials.gov (Identifier: NCT01541969)
The Distressed Brain: A Group Blind Source Separation Analysis on Tinnitus
Background: Tinnitus, the perception of a sound without an external sound source, can lead to variable amounts of distress. Methodology: In a group of tinnitus patients with variable amounts of tinnitus related distress, as measured by the Tinnitus Questionnaire (TQ), an electroencephalography (EEG) is performed, evaluating the patients ’ resting state electrical brain activity. This resting state electrical activity is compared with a control group and between patients with low (N = 30) and high distress (N = 25). The groups are homogeneous for tinnitus type, tinnitus duration or tinnitus laterality. A group blind source separation (BSS) analysis is performed using a large normative sample (N = 84), generating seven normative components to which high and low tinnitus patients are compared. A correlation analysis of the obtained normative components ’ relative power and distress is performed. Furthermore, the functional connectivity as reflected by lagged phase synchronization is analyzed between the brain areas defined by the components. Finally, a group BSS analysis on the Tinnitus group as a whole is performed. Conclusions: Tinnitus can be characterized by at least four BSS components, two of which are posterior cingulate based, one based on the subgenual anterior cingulate and one based on the parahippocampus. Only the subgenual component correlates with distress. When performed on a normative sample, group BSS reveals that distress is characterized by two anterior cingulate based components. Spectral analysis of these components demonstrates that distress in tinnitus is relate
Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter
In December 2000, the Cassini fly-by near Jupiter delivered high-resolution images of Jupiter’s clouds over the entire planet in a band between 50°N and 50°S. Three daily-averaged two-dimensional velocity snapshots extracted from these images are used to perform spectral analysis of jovian atmospheric macroturbulence. A similar analysis is also performed on alternative data documented by Choi and Showman (Choi, D., Showman, A. [2011]. Icarus 216, 597–609), based on a different method of image processing. The inter-comparison of the products of both analyses ensures a better constraint of the spectral estimates. Both analyses reveal strong anisotropy of the kinetic energy spectrum. The zonal spectrum is very steep and most of the kinetic energy resides in slowly evolving, alternating zonal (west–east) jets, while the non-zonal, or residual spectrum obeys the Kolmogorov–Kraichnan law specific to two-dimensional turbulence in the range of the inverse energy cascade. The spectral data is used to estimate the inverse cascade rate ∊ and the zonostrophy index Rβ for the first time. Although both datasets yield somewhat different values of ∊, it is estimated to be in the range 0.5–1.0 × 10−5 m2 s−3. The ensuing values of Rβ ≳ 5 belong well in the range of zonostrophic turbulence whose threshold corresponds to Rβ ≃ 2.5. We infer that the large-scale circulation is maintained by an anisotropic inverse energy cascade. The removal of the Great Red Spot from both datasets has no significant effect upon either the spectra or the inverse cascade rate. The spectral data are used to compute the rate of the energy exchange, W, between the non-zonal structures and the large-scale zonal flow. It is found that instantaneous values of W may exceed ∊ by an order of magnitude. Previous numerical simulations with a barotropic model suggest that W and ∊ attain comparable values only after averaging of W over a sufficiently long time. Near-instantaneous values of W that have been routinely used to infer the rate of the kinetic energy supply to Jupiter’s zonal flow may therefore significantly overestimate ∊. This disparity between W and ∊ may resolve the long-standing conundrum of an unrealistically high rate of energy transfer to the zonal flow. The meridional diffusivity Kϕ in the regime of zonostrophic turbulence is given by an expression that depends on ∊. The value of Kϕ estimated from the spectra is compared against data from the dispersion of stratospheric gases and debris resulting from the Shoemaker-Levy 9 comet and Wesley asteroid impacts in 1994 and 2009 respectively. Not only is Kϕ found to be consistent with estimates for both impacts, but the eddy diffusivity found from observations appears to be scale-independent. This behaviour could be a consequence of the interaction between anisotropic turbulence and Rossby waves specific to the regime of zonostrophic macroturbulence
Exponential estimates of symplectic slow manifolds
In this paper we prove the existence of an almost invariant symplectic slow manifold for analytic Hamiltonian slow-fast systems with finitely many slow degrees of freedom for which the error field is exponentially small. We allow for infinitely many fast degrees of freedom. The method we use is motivated by a paper of MacKay from 2004. The method does not notice resonances, and therefore we do not pose any restrictions on the motion normal to the slow manifold other than it being fast and analytic. We also present a stability result and obtain a generalization of a result of Gelfreich and Lerman on an invariant slow manifold to (finitely) many fast degrees of freedom
Recommended from our members
Inertia-Gravity Waves Emitted from Balanced Flow: Observations, Properties, and Consequences
This paper describes laboratory observations of inertia–gravity waves emitted from balanced fluid flow. In a rotating two-layer annulus experiment, the wavelength of the inertia–gravity waves is very close to the deformation radius. Their amplitude varies linearly with Rossby number in the range 0.05–0.14, at constant Burger number (or rotational Froude number). This linear scaling challenges the notion, suggested by several dynamical theories, that inertia–gravity waves generated by balanced motion will be exponentially small. It is estimated that the balanced flow leaks roughly 1% of its energy each rotation period into the inertia–gravity waves at the peak of their generation.
The findings of this study imply an inevitable emission of inertia–gravity waves at Rossby numbers similar to those of the large-scale atmospheric and oceanic flow. Extrapolation of the results suggests that inertia–gravity waves might make a significant contribution to the energy budgets of the atmosphere and ocean. In particular, emission of inertia–gravity waves from mesoscale eddies may be an important source of energy for deep interior mixing in the ocean
- …