59 research outputs found

    Lesions within the head direction system reduce retrosplenial c-fos expression but do not impair performance on a radial-arm maze task

    Get PDF
    The lateral mammillary nuclei are a central structure within the head direction system yet there is still relatively little known about how these nuclei contribute to spatial performance. In the present study, rats with selective neurotoxic lesions of the lateral mammillary nuclei were tested on a working memory task in a radial-arm maze. This task requires animals to distinguish between eight radially-oriented arms and remember which arms they have entered within a session. Even though it might have been predicted that this task would heavily tax the head direction system, the lesion rats performed equivalently to their surgical controls on this task; no deficit emerged even when the task was made more difficult by rotating the maze mid-way through testing in order to reduce reliance on intramaze cues. Rats were subsequently tested in the dark to increase the use of internally generated direction cues but the lesion rats remained unimpaired. In contrast, the lateral mammillary nuclei lesions were found to decrease retrosplenial c-Fos levels. These results would suggest that the head direction system is not required for the acquisition of the standard radial-arm maze task. It would also suggest that small decreases in retrosplenial c-Fos are not sufficient to produce behavioural impairments

    Evidence of a spatial encoding deficit in rats with lesions of the mammillary bodies or mammillothalamic tract

    Get PDF
    The present study sought to identify the role of the mammillary bodies and their projections to the anterior thalamic nuclei for spatial memory. Rats with either selective, neurotoxic mammillary body lesions or discrete mammillothalamic tract lesions were tested on various spatial working memory tasks. Tests using the T-maze, radial-arm maze, and water maze were manipulated to compare three possible theories of mammillary body function by increasing proactive interference, increasing retention interval, and taxing the rapid processing of novel spatial stimuli. On T-maze alternation and radial-arm maze tasks, both lesion groups were initially impaired but seemed to recover. Transfer tests revealed, however, a more permanent change in performance, suggesting a failure to use distal (allocentric) cues. Consistent with this, both groups were also impaired at matching-to-place in the water maze and showed little improvement with practice. Nevertheless, once the lesion groups had been trained on a task, they were not affected differentially either by an increase of proactive interference or by retention intervals of up to 30 min. Although both mammillary body and mammillothalamic tract lesions resulted in similar impairments, the mammillothalamic tract group was the more affected when acquiring new spatial information. Together, these results suggest that mammillary body damage causes an encoding deficit when learning new spatial tasks, resulting in a suboptimal mode of performance, which may reflect a loss of directional heading information

    The origin of projections from the posterior cingulate and retrosplenial cortices to the anterior, medial dorsal and laterodorsal thalamic nuclei of macaque monkeys

    Get PDF
    Interactions between the posterior cingulate cortex (areas 23 and 31) and the retrosplenial cortex (areas 29 and 30) with the anterior, laterodorsal and dorsal medial thalamic nuclei are thought to support various aspects of cognition, including memory and spatial processing. To detail these interactions better, the present study used retrograde tracers to reveal the origins of the corticothalamic projections in two closely related monkey species (Macaca mulatta, Macaca fascicularis). The medial dorsal thalamic nucleus received only light cortical inputs, which predominantly arose from area 23. Efferents to the anterior medial thalamic nucleus also arose principally from area 23, but these projections proved more numerous than those to the medial dorsal nucleus and also involved additional inputs from areas 29 and 30. The anterior ventral and laterodorsal thalamic nuclei had similar sources of inputs from the posterior cingulate and retrosplenial cortices. For both nuclei, the densest projections arose from areas 29 and 30, with numbers of thalamic inputs often decreasing when going dorsal from area 23a to 23c and to area 31. In all cases, the corticothalamic projections almost always arose from the deepest cortical layer. The different profiles of inputs to the anterior medial and anterior ventral thalamic nuclei reinforce other anatomical and electrophysiological findings suggesting that these adjacent thalamic nuclei serve different, but complementary, functions supporting memory. While the lack of retrosplenial connections singled out the medial dorsal nucleus, the very similar connection patterns shown by the anterior ventral and laterodorsal nuclei point to common roles in cognition

    The rat retrosplenial cortex is required when visual cues are used flexibly to determine location

    Get PDF
    The present study examined the consequences of retrosplenial cortex lesions in rats on two novel spatial tasks. In the first experiment, rats discriminated opposing room views from the same general location, along with their opposing directions of travel (‘Perspective’ task). Rats were trained with food rewards using a go/no-go design. Extensive retrosplenial cortex lesions involving both the granular and dysgranular areas impaired acquisition of this discrimination, which relied on distal visual cues. The same rats were then trained on a non-spatial go/no-go discrimination between different digging media. No lesion effect was apparent. In the final experiment, rats discriminated between two locations within a room (‘Location’ task) such that direction of travel at each location would be of less help in solving the problem. Both extensive retrosplenial lesions and selective dysgranular retrosplenial lesions impaired this Location task. These results highlight the importance of the retrosplenial cortex (areas 29 and 30), including the dysgranular cortex (area 30), for the effective use of distal visual cues to solve spatial problems. The findings, which help to explain the bias away from visual allocentric solutions that is shown by rats with retrosplenial cortex lesions when performing spatial tasks, also support the notion that the region assists the integration of different categories of visuospatial information

    Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests

    Get PDF
    We compared neuronal activation, as measured by Fos staining, during different spatial tasks in two experiments. The counts of Fos-stained neurons in the hippocampus increased as the spatial demands of the tasks increased, the tasks having been carefully matched for other factors. In Experiment 1, matched groups of rats either ran a standard eight-arm radial maze task or were trained to run up and down just one arm of the maze; the number of runs and rewards was identical in both conditions. In Experiment 2, rats were trained on the eight-arm maze but in different rooms. On the critical test day, both groups were run in the same room so that one group now performed with novel landmarks. All hippocampal subfields (dentate gyrus, CA3, CA1, dorsal, ventral, and caudal subiculum) showed a relative increases in c-fos activation in the eight-arm (Experiment 1) and novel room (Experiment 2) conditions, the sole exception being the ventral subiculum in Experiment 2. Although increased c-fosactivation was found in both dorsal and ventral hippocampus, in Experiment 2 the relative increase was significantly greater in the dorsal hippocampus. Parahippocampal cortices responded heterogeneously: the perirhinal cortex failed to show increased activation in both experiments, in contrast to the entorhinal and postrhinal cortices. Subsequent comparisons confirmed that the perirhinal and postrhinal cortices responded in qualitatively different ways, the perirhinal cortex differing from the rest of the hippocampal formation. These experiments, which provide the first analysis of hippocampal Fos production during tests of allocentric spatial working memory, reveal that all components of the hippocampus are activated, but that under certain conditions the dorsal hippocampus is disproportionately involved

    How do mammillary body inputs contribute to anterior thalamic function?

    Get PDF
    It has long been assumed that the main function of the mammillary bodies is to provide a relay for indirect hippocampal inputs to the anterior thalamic nuclei. Such models afford the mammillary bodies no independent role in memory and overlook the importance of their other, non-hippocampal, inputs. This review focuses on recent advances that herald a new understanding of the importance of the mammillary bodies, and their inputs from the limbic midbrain, for anterior thalamic function. It has become apparent that the mammillary bodies’ contribution to memory is not dependent on afferents from the subicular complex. Rather, the ventral tegmental nucleus of Gudden is a vital source of inputs that support memory processes within the medial mammillary bodies. In parallel, the lateral mammillary bodies, via their connections with the dorsal tegmental nucleus of Gudden, are critical for generating head-direction signals. These two parallel, but distinct, information streams converge on the anterior thalamic nuclei and support different aspects of spatial memory

    Using Fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions

    Get PDF
    Activity of the immediate early gene c-fos was compared across hemispheres in rats with unilateral fornix lesions. To engage Fos production, rats first performed a radial arm maze task that is severely disrupted by bilateral fornix lesions. Using immunohistochemical techniques, Fos-positive cells were visualized and counted in 39 sites in both hemispheres. Fornix lesions led to a significant reduction in Fos in all ipsilateral hippocampal subfields, as well as the entorhinal cortex and most of the subicular complex. Other sites that showed reduced activity included the ipsilateral retrosplenial, anterior cingulate, and postrhinal cortices. Subcortical regions showing significant Fos decreases included the anterior thalamic nuclei, supramammillary nucleus, diagonal band of Broca, and lateral septum. Thus, the effects of fornix lesions extended beyond the hippocampal formation and included sites not directly innervated by the tract. These changes were nevertheless selective, as shown by the lack of hemispheric difference in any of the preselected control sites, the perirhinal cortex, or nucleus accumbens. Furthermore, there were no hemispheric differences in an additional group of animals with unilateral fornix lesions that were killed directly from the home cage. The location of Fos changes closely corresponded to those brain regions that when lesioned disrupt spatial working memory. Moreover, there was a correspondence between those brain regions that show increased Fos production in normal animals performing the radial arm maze task and those affected by fornix lesions. These results show that fornix transection has widespread, but selective, effects on a network of structures normally activated by spatial memory processes, with these effects extending beyond the hippocampal formation

    What does spatial alternation tell us about retrosplenial cortex function?

    Get PDF
    The retrosplenial cortex supports navigation, but there are good reasons to suppose that the retrosplenial cortex has a very different role in spatial memory from that of the hippocampus and anterior thalamic nuclei. For example, retrosplenial lesions appear to have little or no effect on standard tests of spatial alternation. To examine these differences, the current study sought to determine whether the retrosplenial cortex is important for just one spatial cue type (e.g., allocentric, directional or intra-maze cues) or whether the retrosplenial cortex helps the animal switch between competing spatial strategies or competing cue types. Using T-maze alternation, retrosplenial lesion rats were challenged with situations in which the available spatial information between the sample and test phases was changed, so taxing the interaction between different cue types. Clear lesion deficits emerged when intra- and extra-maze cues were placed in conflict (by rotating the maze between the sample and choice phases), or when the animals were tested in the dark in a double-maze. Finally, temporary inactivation of the retrosplenial cortex by muscimol infusions resulted in a striking deficit on standard T-maze alternation, indicating that, over time, other sites may be able to compensate for the loss of the retrosplenial cortex. This pattern of results is consistent with the impoverished use of both allocentric and directional information, exacerbated by an impaired ability to switch between different cue types

    The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning

    Get PDF
    The study examined the importance of the retrosplenial cortex for the incidental learning of the spatial arrangement of distinctive features within a scene. In a modified Morris water-maze, rats spontaneously learnt the location of an escape platform prior to swimming to that location. For this, rats were repeatedly placed on a submerged platform in one corner of either a rectangular (Experiment 1) or square (Experiments 2, 3) pool with walls of different appearance. The rats were then released in the center of the pool for their first test trial. In Experiment 1, the correct corner and its diagonally opposite partner (also correct) were specified by the geometric properties of the pool. Rats with retrosplenial lesions took longer to first reach a correct corner, subsequently showing an attenuated preference for the correct corners. A reduced preference for the correct corner was also found in Experiment 2, when platform location was determined by the juxtaposition of highly salient visual cues (black vs. white walls). In Experiment 3, less salient visual cues (striped vs. white walls) led to a robust lesion impairment, as the retrosplenial lesioned rats showed no preference for the correct corner. When subsequently trained actively to swim to the correct corner over successive trials, retrosplenial lesions spared performance on all three discriminations. The findings not only reveal the importance of the retrosplenial cortex for processing various classes of visuospatial information but also highlight a broader role in the incidental learning of the features of a spatial array, consistent with the translation of scene information

    Differential regulation of synaptic plasticity of the hippocampal and the hypothalamic inputs to the anterior thalamus

    Get PDF
    The hippocampus projects to the anterior thalamic nuclei both directly and indirectly via the mammillary bodies, but little is known about the electrophysiological properties of these convergent pathways. Here we demonstrate, for the first time, the presence of long-term plasticity in anterior thalamic nuclei synapses in response to high- and low-frequency stimulation (LFS) in urethane-anesthetized rats. We compared the synaptic changes evoked via the direct vs. the indirect hippocampal pathways to the anterior thalamus, and found that long-term potentiation (LTP) of the thalamic field response is induced predominantly through the direct hippocampal projections. Furthermore, we have estimated that that long-term depression (LTD) can be induced only after stimulation of the indirect connections carried by the mammillothalamic tract. Interestingly, basal synaptic transmission mediated by the mammillothalamic tract undergoes use-dependent, BDNF-mediated potentiation, revealing a distinct form of plasticity specific to the diencephalic region. Our data indicate that the thalamus does not passively relay incoming information, but rather acts as a synaptic network, where the ability to integrate hippocampal and mammillary body inputs is dynamically modified as a result of previous activity in the circuit. The complementary properties of these two parallel pathways upon anterior thalamic activity reveal that they do not have duplicate functions
    • …
    corecore