12 research outputs found

    Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome.

    Get PDF
    Nitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, metagenomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by hosts in substantial quantities. Specialized core symbionts of 17 studied Cephalotes species encode the pathways directing these activities, and several recycle N in vitro. These findings point to a highly efficient N economy, and a nutritional mutualism preserved for millions of years through the derived behaviors and gut anatomy of Cephalotes ants

    Author Correction: Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome.

    Get PDF
    The originally published version of the Supplementary Information file associated with this Article contained an error in Supplementary Figure 3. Panel b was inadvertently replaced with a duplicate of panel a. The error has now been fixed and the corrected version of the Supplementary Information PDF is available to download from the HTML version of the Article

    A high-k mm-wave scattering diagnostic for measuring binormal electron scale turbulence on MAST-U

    Get PDF
    Plasma turbulence plays a key role in determining the spatial-temporal evolution of plasmas in astrophysical, geophysical and laboratory contexts. In particular, turbulence on disparate spatial and temporal scales limits the level of confinement achievable in magnetic confinement fusion experiments and therefore limits the viability of sustainable fusion power. MAST-U is a well-equipped experimental facility having instruments to measure ion-scale turbulence and electron scale turbulence at the plasma edge. However, measurement of turbulence at electron scales in the core is problematic, especially in H mode. This gap in measurement capability has provided the motivation to develop a high-k microwave scattering diagnostic for MAST-U*. The turbulence is expected to be most significant in the binormal direction with scale ranges expected of order (k ρe ~ 0.1 -> 0.5) in the confinement region of the core plasma (0.5 < r/a < 1). We therefore propose a binormal high-k scattering diagnostic operating with near-perpendicular incidence to the magnetic field through the scattering region. In this paper, the results of Gaussian wave optics and beam-tracing calculations [1] are presented that demonstrate the predicted spatial and wavenumber resolution of the diagnostic along with the sensitivity of the measurement, assuming a probe beam crossing close to the diameter of the MAST-U vessel in the equatorial mid-plane. The analysis considers the variation of magnetic pitch angle ( = tan-1 (B / B)) as a function of plasma radius and its effect on the instrument selectivity function F(r) as a function of scattering location and kρe. An illustration of the proposed scattering geometry with respect to the MAST-U crosssectional schematic is given in figure 1

    Small GTPases and cilia

    No full text

    III. ABTEILUNG. BIBLIOGRAPHISCHE NOTIZEN UND MITTEILUNGEN

    No full text
    corecore