99 research outputs found

    Period change of Superhumps in the WZ Sge-Type Dwarf Nova, HV Virginis

    Full text link
    After 10 years of quiescence, HV Vir underwent a superoutburst in January 2002. We report time-series observations clearly revealing the period change of ordinary superhumps during the superoutburst. We derived a mean superhump period of 0.058260 d and a positive period derivative of 7×1057 \times 10^{-5}. These results are in good agreement with the value obtained from the 1992 superoutburst. We also detected early superhumps, which were not clearly recognized in the past outburst, and a possible rebrightening. Both of them are the common characteristics of WZ Sge-type stars.Comment: 9 pages, 8 figures. Accepted for publication in PAS

    Discovery of a New Deeply Eclipsing SU UMa-Type Dwarf Nova, IY UMa (= TmzV85)

    Full text link
    We discovered a new deeply eclipsing SU UMa-type dwarf nova, IY UMa, which experienced a superoutburst in 2000 January. Our monitoring revealed two distinct outbursts, which suggest a superoutburst interval of ~800 d, or its half, and an outburst amplitude of 5.4 mag. From time-series photometry during the superoutburst, we determined a superhump and orbital period of 0.07588 d and 0.0739132 d, respectively.Comment: 5 pages, 3 figures, accepted by PASJ lette

    XO-5b: A Transiting Jupiter-sized Planet With A Four Day Period

    Full text link
    The star XO-5 (GSC 02959-00729, V=12.1, G8V) hosts a Jupiter-sized, Rp=1.15+/-0.12 Rjup, transiting extrasolar planet, XO-5b, with an orbital period of P=4.187732+/-0.00002 days. The planet mass (Mp=1.15+/-0.08 Mjup) and surface gravity (gp=22+/-5 m/s^2) are significantly larger than expected by empirical Mp-P and Mp-P-[Fe/H] relationships. However, the deviation from the Mp-P relationship for XO-5b is not large enough to suggest a distinct type of planet as is suggested for GJ 436b, HAT-P-2b, and XO-3b. By coincidence XO-5 overlies the extreme H I plume that emanates from the interacting galaxy pair NGC 2444/NGC 2445 (Arp 143).Comment: 10 pages, 9 Figures, Submitted to Ap

    Rapid Oscillations in Cataclysmic Variables. XVI. DW Cancri

    Full text link
    We report photometry and spectroscopy of the novalike variable DW Cancri. The spectra show the usual broad H and He emission lines, with an excitation and continuum slope characteristic of a moderately high accretion rate. A radial-velocity search yields strong detections at two periods, 86.1015(3) min and 38.58377(6) min. We interpret these as respectively the orbital period P_orb of the binary, and the spin period P_spin of a magnetic white dwarf. The light curve also shows the spin period, plus an additional strong signal at 69.9133(10) min, which coincides with the difference frequency 1/P_spin-1/P_orb. These periods are stable over the 1 year baseline of measurement. This triply-periodic structure mimics the behavior of several well-credentialed members of the "DQ Herculis" (intermediate polar) class of cataclysmic variables. DQ Her membership is also suggested by the mysteriously strong sideband signal (at nu_spin-nu_orb), attesting to a strong pulsed flux at X-ray/EUV/UV wavelengths. DW Cnc is a new member of this class, and would be an excellent target for extended observation at these wavelengths.Comment: PDF, 28 pages, 6 tables, 9 figures; accepted, in press, to appear June 2004, PASP; more info at http://cba.phys.columbia.edu

    XO-2b: Transiting Hot Jupiter in a Metal-rich Common Proper Motion Binary

    Full text link
    We report on a V=11.2 early K dwarf, XO-2 (GSC 03413-00005), that hosts a Rp=0.98+0.03/-0.01 Rjup, Mp=0.57+/-0.06 Mjup transiting extrasolar planet, XO-2b, with an orbital period of 2.615857+/-0.000005 days. XO-2 has high metallicity, [Fe/H]=0.45+/-0.02, high proper motion, mu_tot=157 mas/yr, and has a common proper motion stellar companion with 31" separation. The two stars are nearly identical twins, with very similar spectra and apparent magnitudes. Due to the high metallicity, these early K dwarf stars have a mass and radius close to solar, Ms=0.98+/-0.02 Msolar and Rs=0.97+0.02/-0.01 Rsolar. The high proper motion of XO-2 results from an eccentric orbit (Galactic pericenter, Rper<4 kpc) well confined to the Galactic disk (Zmax~100 pc). In addition, the phase space position of XO-2 is near the Hercules dynamical stream, which points to an origin of XO-2 in the metal-rich, inner Thin Disk and subsequent dynamical scattering into the solar neighborhood. We describe an efficient Markov Chain Monte Carlo algorithm for calculating the Bayesian posterior probability of the system parameters from a transit light curve.Comment: 14 pages, 10 Figures, Accepted in ApJ. Negligible changes to XO-2 system properties. Removed Chi^2 light curve analysis section, and simplified MCMC light curve analysis discussio

    Superhumps in Cataclysmic Binaries. XXV. q_crit, epsilon(q), and Mass-Radius

    Full text link
    We report on successes and failures in searching for positive superhumps in cataclysmic variables, and show the superhumping fraction as a function of orbital period. Basically, all short-period systems do, all long-period systems don't, and a 50% success rate is found at P_orb=3.1+-0.2 hr. We can use this to measure the critical mass ratio for the creation of superhumps. With a mass-radius relation appropriate for cataclysmic variables, and an assumed mean white-dwarf mass of 0.75 M_sol, we find a mass ratio q_crit=0.35+-0.02. We also report superhump studies of several stars of independently known mass ratio: OU Virginis, XZ Eridani, UU Aquarii, and KV UMa (= XTE J1118+480). The latter two are of special interest, because they represent the most extreme mass ratios for which accurate superhump measurements have been made. We use these to improve the epsilon(q) calibration, by which we can infer the elusive q from the easy-to-measure epsilon (the fractional period excess of P_superhump over P_orb). This relation allows mass and radius estimates for the secondary star in any CV showing superhumps. The consequent mass-radius law shows an apparent discontinuity in radius near 0.2 M_sol, as predicted by the disrupted magnetic braking model for the 2.1-2.7 hour period gap. This is effectively the "empirical main sequence" for CV secondaries.Comment: PDF, 45 pages, 9 tables, 12 figures; accepted, in press, to appear November 2005, PASP; more info at http://cba.phys.columbia.edu
    corecore