2 research outputs found

    Parameter estimation in a human operator describing function model for a two-dimensional tracking task

    Get PDF
    A previously described parameter estimation program was applied to a number of control tasks, each involving a human operator model consisting of more than one describing function. One of these experiments is treated in more detail. It consisted of a two dimensional tracking task with identical controlled elements. The tracking errors were presented on one display as two vertically moving horizontal lines. Each loop had its own manipulator. The two forcing functions were mutually independent and consisted each of 9 sine waves. A human operator model was chosen consisting of 4 describing functions, thus taking into account possible linear cross couplings. From the Fourier coefficients of the relevant signals the model parameters were estimated after alignment, averaging over a number of runs and decoupling. The results show that for the elements in the main loops the crossover model applies. A weak linear cross coupling existed with the same dynamics as the elements in the main loops but with a negative sign

    Parameter estimation in linear models of the human operator in a closed loop with application of deterministic test signals

    Get PDF
    Parameter estimation techniques are discussed with emphasis on unbiased estimates in the presence of noise. A distinction between open and closed loop systems is made. A method is given based on the application of external forcing functions consisting of a sun of sinusoids; this method is thus based on the estimation of Fourier coefficients and is applicable for models with poles and zeros in open and closed loop systems
    corecore