3 research outputs found

    Breccia-cored columnar rosettes in a rubbly pahoehoe lava flow, Elephanta Island, Deccan Traps, and a model for their origin

    No full text
    Rubbly pahoehoe lava flows are abundant in many continental flood basalts including the Deccan Traps. However, structures with radial joint columns surrounding cores of flow-top breccia (FTB), reported from some Deccan rubbly pahoehoe flows, are yet unknown from other basaltic provinces. A previous study of these Deccan “breccia-cored columnar rosettes” ruled out explanations such as volcanic vents and lava tubes, and showed that the radial joint columns had grown outwards from cold FTB inclusions incorporated into the hot molten interiors. How the highly vesicular (thus low-density) FTB blocks might have sunk into the flow interiors has remained a puzzle. Here we describe a new example of a Deccan rubbly pahoehoe flow with FTB-cored rosettes, from Elephanta Island in the Mumbai harbor. Noting that (1) thick rubbly pahoehoe flows probably form by rapid inflation (involving many lava injections into a largely molten advancing flow), and (2) such flows are transitional to ‘a’ā flows (which continuously shed their top clinker in front of them as they advance), we propose a model for the FTB-cored rosettes. We suggest that the Deccan flows under study were shedding some of their FTB in front of them as they advanced and, with high-eruption rate lava injection and inflation, frontal breakouts would incorporate this FTB rubble, with thickening of the flow carrying the rubble into the flow interior. This implies that, far from sinking into the molten interior, the FTB blocks may have been rising, until lava supply and inflation stopped, the flow began solidifying, and joint columns developed outward from each cold FTB inclusion as already inferred, forming the FTB-cored rosettes. Those rubbly pahoehoe flows which began recycling most of their FTB became the ‘a’ā flows of the Deccan

    Geochemistry of Deccan Tholeiite Flows and Dykes of Elephanta Island: Insights into the Stratigraphy and Structure of the Panvel Flexure Zone, Western Indian Rifted Margin

    No full text
    Elephanta Island near Mumbai is an important area for understanding the stratigraphic and structural framework of the Deccan flood basalt province in the tectonically disturbed Panvel flexure zone on the western Indian rifted margin. Elephanta exposes a west-dipping, 66–65 Ma sequence of tholeiitic lava flows and dykes. Geochemical correlations with the thick, horizontal, 66–65 Ma Western Ghats sequence to the east show that lava flows of the Khandala and Ambenali formations are present at Elephanta, with two lava flows probably being locally derived. The Elephanta tholeiites have experienced crystal fractionation and accumulation, particularly of olivine. They have ΔNd(t) ranging from +5.4 to −7.9 and (87Sr/86Sr)t from 0.70391 to 0.70784, with most tholeiites little contaminated by continental lithosphere, probably lower crust. Field and geochemical data indicate a normal fault along the central part of Elephanta with a 220 m downthrow, consistent with a domino-type block-faulted structure of Elephanta, and the surrounding area as previously known. Seventeen of the 20 analyzed Elephanta intrusions, striking ~N–S, belong to the Coastal dyke swarm of the western Deccan province. Several of these are probable feeders to the Ambenali Formation in the Western Ghats sequence, requiring reconsideration of the current view that the voluminous Wai Subgroup lavas of the Western Ghats were erupted without organized crustal extension. East–west-directed extensional strain was already active at 66–65 Ma along this future (62.5 Ma) rifted continental margin. A young (~62 Ma) ankaramite dyke on Elephanta Island is a probable feeder to the Powai ankaramite flow in the 62.5 Ma Mumbai sequence 20 km to the northwest
    corecore