9 research outputs found
The determination of psilocin and psilocybin in hallucinogenic mushrooms by HPLC utilizing a dual reagent acidic potassium permanganate and tris(2,2´-bipyridyl)ruthenium(II) chemiluminescence detection system
This paper describes a procedure for the determination of psilocin and psilocybin in mushroom extracts using high-performance liquid chromatography with postcolumn chemiluminescence detection. A number of extraction methods for psilocin and psilocybin in hallucinogenic mushrooms were investigated, with a simple methanolic extraction being found to be most effective. Psilocin and psilocybin were extracted from a variety of hallucinogenic mushrooms using methanol. The analytes were separated on a C12 column using a (95:5% v/v) methanol:10 mM ammonium formate, pH 3.5 mobile phase with a run time of 5 min. Detection was realized through a dual reagent chemiluminescence detection system of acidic potassium permanganate and tris(2,2\u27-bipyridyl)ruthenium(II). The chemiluminescence detection system gave improved detectability when compared with UV absorption at 269 nm, with detection limits of 1.2 × 10−8 and 3.5 × 10−9 mol/L being obtained for psilocin and psilocybin, respectively. The procedure was applied to the determination of psilocin and psilocybin in three Australian species of hallucinogenic mushroom
The unusual binding mode of cnicin to the antibacterial target enzyme MurA revealed by X-ray crystallography
We present the X-ray structure of the antibacterial target enzyme MurA in complex with its substrate UNAG and the sesquiterpene lactone cnicin, a potent inhibitor of the enzyme. The structure reveals that MurA has catalyzed the formation of a covalent adduct between cnicin and UNAG. This adduct, which can be regarded as a noncovalent suicide inhibitor, has been formed by an unusual "anti-Michael" 1,3-addition of UNAG to an alpha,beta-unsaturated carbonyl function in cnicin