3 research outputs found
Mixotrophic Cultivation of Microalgae in Cassava Processing Wastewater for Simultaneous Treatment and Production of Lipid-Rich Biomass
Cassava processing wastewater (CPW) is a highly polluting, liquid residue of cassava processing, usually discarded or treated anaerobically. However, it can serve as a low-cost culture medium for microalgae. After a preliminary evaluation of the growth of 10 microalgal strains in diluted CPW, the microalgae Haematococcus pluvialis SAG 34â1b and Neochloris (Ettlia) oleoabundans UTEX 1185 were selected for cultivation in CPW without a supply of additional nutrients and evaluated for their growth, lipid production, and nutrients removal. Maximal biomass concentrations of 1.79 g·Lâ1 for H. pluvialis and 3.18 g·Lâ1 for N. oleoabundans were achieved with 25% CPW medium on the 13th day of growth. The algae H. pluvialis and N. oleoabundans removed 60.80 and 69.16% of the chemical oxygen demand, 51.06 and 58.19% of total nitrate, and 54.68 and 69.84% of phosphate, respectively. On average, lipid productivities reached 0.018 and 0.041 g·Lâ1 dayâ1 for H. pluvialis and N. oleoabundans, respectively. Therefore, cultivating these microalgae in diluted CPW is a promising treatment for cassava wastewater with simultaneous valuable biomass production
Mixotrophic Cultivation of Microalgae in Cassava Processing Wastewater for Simultaneous Treatment and Production of Lipid-Rich Biomass
Cassava processing wastewater (CPW) is a highly polluting, liquid residue of cassava processing, usually discarded or treated anaerobically. However, it can serve as a low-cost culture medium for microalgae. After a preliminary evaluation of the growth of 10 microalgal strains in diluted CPW, the microalgae Haematococcus pluvialis SAG 34−1b and Neochloris (Ettlia) oleoabundans UTEX 1185 were selected for cultivation in CPW without a supply of additional nutrients and evaluated for their growth, lipid production, and nutrients removal. Maximal biomass concentrations of 1.79 g·L−1 for H. pluvialis and 3.18 g·L−1 for N. oleoabundans were achieved with 25% CPW medium on the 13th day of growth. The algae H. pluvialis and N. oleoabundans removed 60.80 and 69.16% of the chemical oxygen demand, 51.06 and 58.19% of total nitrate, and 54.68 and 69.84% of phosphate, respectively. On average, lipid productivities reached 0.018 and 0.041 g·L−1 day−1 for H. pluvialis and N. oleoabundans, respectively. Therefore, cultivating these microalgae in diluted CPW is a promising treatment for cassava wastewater with simultaneous valuable biomass production
Microscale direct transesterification of microbial biomass with ethanol for screening of microorganisms by its fatty acid content
Abstract We present an improved method of direct transesteriïŹcation suitable for the quantitative analysis of multiple dry samples for its fatty acid content, using a minimal amount of biomass and reactants. The method features an acid-catalyzed direct alcoholysis of microgram samples of dry biomass; the rationale behind the solvent and reagent proportions chosen is discussed. The method was validated using seven microbial strains with diverse lipid content (Saccharomyces cerevisiae, Saccharomyces boulardii, Candida tropicalis, Haematococcus pluvialis, Chlorella vulgaris, Spirulina platensis and Schizochytrium limacinum), and compared with a macroscale direct transesterification method, and with gravimetric analysis of lipids extracted with solvents. The microscale method showed a conversion of 98.06 ± 0.87% of the lipids, using approximately 3 mg of dry biomass, 1mL of 0.2M H2SO4 dissolved in anhydrous ethanol (the acid is the catalyzer and ethanol the reactant)). The mixture was maintained at 70 °C for 20 h with periodic mixing, and then extracted with 2mL n-heptane and analyzed by GC-FID. The lipid content was then calculated considering dilution and sample mass. This method is effective, reliable, and technically attractive for analytical and comparative purposes