2 research outputs found

    Effects of Chronic Oral Probiotic Treatment in Paclitaxel-Induced Neuropathic Pain

    Get PDF
    Chemotherapy-induced peripheral neuropathy (CIPN) represents one of the most prevalent and potentially disabling side effects due to the use of anticancer drugs, one of the primary neuropathies detected is peripheral neuropathy induced by administration of taxanes, including paclitaxel. It has been demonstrated that gut microbiota is crucial for the therapeutic effect of chemotherapeutic drugs for inhibiting tumor growth and contributed to the pathogenesis of the CIPN. The use of nutraceuticals has receiving growing attention from the research community due to their phytochemical, biological, and pharmacological properties. It has been demonstrated that probiotic formulations may both reduce inflammation and modulate the expression of pain receptors. Our studies tested the efficacy of a probiotic formulation, SLAB51, in preventing paclitaxel-induced neuropathy. Interestingly, our probiotic formulation was able to keep the gut integrity, preserving its functionality, in CIPN-mice, moreover, it prevented the mechanical and cold hypersensitivity induced in paclitaxel-mice. Additionally, ex-vivo analysis showed that in CIPN-mice the pro-biotic treatment increased the expression of opioid and cannabinoid receptors in spinal cord, it prevented in the reduction in nerve fiber damage in the paws and modulated the serum proinflammatory cytokines concentration. On basis of these data, the use of this specific probiotic formulation may represent a valid adjuvant agent to paclitaxel, useful and not toxic for long-lasting therapies

    Ascospore Infection and Colletotrichum Species Causing Glomerella Leaf Spot of Apple in Uruguay

    No full text
    Glomerella leaf spot (GLS) caused by Colletotrichum spp. is a destructive disease of apple restricted to a few regions worldwide. The distribution and evolution of GLS symptoms were observed for two years in Uruguay. The recurrent ascopore production on leaves and the widespread randomized distribution of symptoms throughout trees and orchard, suggest that ascospores play an important role in the disease dispersion. The ability of ascospores to produce typical GLS symptom was demonstrated by artificial inoculation. Colletotrichum strains causing GLS did not result in rot development, despite remaining alive in fruit lesions. Based on phylogenetic analysis of actin, β-tubulin and glyceraldehyde-3-phosphate dehydrogenase gene regions of 46 isolates, 25 from fruits and 21 from leaves, C. karstii was identified for the first time causing GLS in Uruguay and C. fructicola was found to be the most frequent (89%) and aggressive species. The higher aggressiveness of C. fructicola and its ability on to produce abundant fertile perithecia could help to explain the predominance of this species in the field
    corecore