15 research outputs found
Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study
: The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
Innovative applications of an ex vivo vascular bioreactor
Vascular bioreactors are ex vivo systems which host an isolated preserved blood vessel and can play an important role for investigating physiology and pathology of vessel disease. They can also be used for testing novel treatments, combining the advantages of in vivo and in vitro models. Despite their potential, the use of vascular bioreactors has not reached a relevant position in the testing strategies yet and it usually focusses on a single application. The aim of this dissertation was to promote general use of bioreactors in vascular medicine research as well in the development of new diagnostic tools, new devices and tissue-engineered solutions. This work first focused on using an innovative ex vivo vascular bioreactor to culture arteries from slaughterhouse animals under physiologically relevant conditions. Methods to alter arterial biomechanical properties were then explored and aneurysm pathology was induced and treated with a stent-graft in the bioreactor. The bioreactor was also used to investigate vasomotor responses and intravascular imaging effect on arteries. In addition, investigation of a novel vascular prosthesis paved the road for more extensive use of the bioreactor for tissue engineering applications. This research showed that a vascular bioreactor can be designed and operated as a versatile and comprehensive platform which potentially enables large scale use for research and medical device testing
Development of an ex vivo aneurysm model for vascular device testing
\u3cp\u3eAn ex vivo aneurysm model that closely resembles the in vivo situation can provide an important tool for testing therapies. The model should mimic a variety of conditions, such as in vivo hemodynamics and native arterial structure and characteristics, avoiding animal experimentation. Therefore, the aim of this study is to develop an ex vivo aneurysm model by vessel wall stiffening to be used to assess treatment strategies. Porcine carotid arteries from slaughterhouse animals were used to evaluate the acute effect of different concentrations of Rose Bengal on distensibility. This sono-sensitive compound was activated by several ultrasound frequencies, resulting in stiffening of the treated arteries of which the most effective combination was selected. In a pulsatile ex vivo vascular bioreactor treated and control porcine carotid arteries were subjected to physiological conditions for 10 days. During culture, hemodynamics showed increased mean pressure and decreased pulsatility in treated arteries compared to controls. Change in vessel morphology and significant increase of distal diameter was observed in the treated arteries but not in the controls. Histology of treated arteries revealed dissection-like lesions distally and aneurysm-like structure proximally. Finally, a stent graft was deployed in one treated artery and cultured demonstrating the feasibility of testing endovascular devices in the model. In conclusion, we developed an ex vivo model reproducing the onset of aneurysm formation. This could represent a promising tool for early stage device testing thereby reducing the need for animal studies.\u3c/p\u3
Biomedical applications of photo- and sono-activated Rose Bengal:a review
\u3cp\u3eObjective: The aim of this review is to discuss and compare the extensive range of biomedical applications of photo- and sono-activated Rose Bengal (RB). Background data: RB is a xanthene dye that due to its interesting photo- and sono-sensitive properties is gaining attention in the scientific field. Methods: This study is a literature review using the database PubMed. Results: As a photosensitizer, RB converts the triplet oxygen molecule into reactive oxygen species after irradiation with green light (532 nm). This mechanism allows for the use of photo-activated RB in photochemical tissue bonding, photodynamic therapy, antimicrobial therapy and cancer treatment, photothrombotic animal models, and other applications, including tissue engineering and treatment of tauopathies. As a sono-sensitive compound, RB is applied for sonodynamic therapy, cancer treatment, and antimicrobial therapy. Conclusions: This review outlines the versatility and effectiveness of photo- and sono-activated RB in numerous biomedical applications.\u3c/p\u3
A novel hybrid silk-fibroin/polyurethane three-layered vascular graft: Towards in situ tissue-engineered vascular accesses for haemodialysis
Clinically available alternatives of vascular access for long-term haemodialysis-currently limited to native arteriovenous fistulae and synthetic grafts-suffer from several drawbacks and are associated to high failure rates. Bioprosthetic grafts and tissue-engineered blood vessels are costly alternatives without clearly demonstrated increased performance. In situ tissue engineering could be the ideal approach to provide a vascular access that profits from the advantages of vascular grafts in the short-term (e.g. early cannulation) and of fistulae in the long-term (e.g. high success rates driven by biointegration). Hence, in this study a three-layered silk fibroin/polyurethane vascular graft was developed by electrospinning to be applied as long-term haemodialysis vascular access pursuing a 'hybrid' in situ engineering approach (i.e. based on a semi-degradable scaffold). This Silkothane (R) graft was characterized concerning morphology, mechanics, physical properties, blood contact and vascular cell adhesion/viability. The full three-layered graft structure, influenced by the polyurethane presence, ensured mechanical properties that are a determinant factor for the success of a vascular access (e.g. vein-graft compliance matching). The Silkothane (R) graft demonstrated early cannulation potential in line with self-sealing commercial synthetic arteriovenous grafts, and a degradability driven by enzymatic activity. Moreover, the fibroin-only layers and extracellular matrix-like morphology, presented by the graft, revealed to be crucial in providing a non-haemolytic character, long clotting time, and favourable adhesion of human umbilical vein endothelial cells with increasing viability after 3 and 7 d. Accordingly, the proposed approach may represent a step forward towards an in situ engineered hybrid vascular access with potentialities for vein-graft anastomosis stability, early cannulation, and biointegration
A novel hybrid silk-fibroin/polyurethane three-layered vascular graft: Towards in situ tissue-engineered vascular accesses for haemodialysis
Clinically available alternatives of vascular access for long-term haemodialysis-currently limited to native arteriovenous fistulae and synthetic grafts-suffer from several drawbacks and are associated to high failure rates. Bioprosthetic grafts and tissue-engineered blood vessels are costly alternatives without clearly demonstrated increased performance. In situ tissue engineering could be the ideal approach to provide a vascular access that profits from the advantages of vascular grafts in the short-term (e.g. early cannulation) and of fistulae in the long-term (e.g. high success rates driven by biointegration). Hence, in this study a three-layered silk fibroin/polyurethane vascular graft was developed by electrospinning to be applied as long-term haemodialysis vascular access pursuing a 'hybrid' in situ engineering approach (i.e. based on a semi-degradable scaffold). This Silkothane (R) graft was characterized concerning morphology, mechanics, physical properties, blood contact and vascular cell adhesion/viability. The full three-layered graft structure, influenced by the polyurethane presence, ensured mechanical properties that are a determinant factor for the success of a vascular access (e.g. vein-graft compliance matching). The Silkothane (R) graft demonstrated early cannulation potential in line with self-sealing commercial synthetic arteriovenous grafts, and a degradability driven by enzymatic activity. Moreover, the fibroin-only layers and extracellular matrix-like morphology, presented by the graft, revealed to be crucial in providing a non-haemolytic character, long clotting time, and favourable adhesion of human umbilical vein endothelial cells with increasing viability after 3 and 7 d. Accordingly, the proposed approach may represent a step forward towards an in situ engineered hybrid vascular access with potentialities for vein-graft anastomosis stability, early cannulation, and biointegration
A novel hybrid silk-fibroin/polyurethane three-layered vascular graft:Towards in situ tissue-engineered vascular accesses for haemodialysis
\u3cp\u3e
Clinically available alternatives of vascular access for long-term haemodialysis - currently limited to native arteriovenous fistulae and synthetic grafts - suffer from several drawbacks and are associated to high failure rates. Bioprosthetic grafts and tissue-engineered blood vessels are costly alternatives without clearly demonstrated increased performance. In situ tissue engineering could be the ideal approach to provide a vascular access that profits from the advantages of vascular grafts in the short-term (e.g. early cannulation) and of fistulae in the long-term (e.g. high success rates driven by biointegration). Hence, in this study a three-layered silk fibroin/polyurethane vascular graft was developed by electrospinning to be applied as long-term haemodialysis vascular access pursuing a 'hybrid' in situ engineering approach (i.e. based on a semi-degradable scaffold). This Silkothane
\u3csup\u3e®\u3c/sup\u3e
graft was characterized concerning morphology, mechanics, physical properties, blood contact and vascular cell adhesion/viability. The full three-layered graft structure, influenced by the polyurethane presence, ensured mechanical properties that are a determinant factor for the success of a vascular access (e.g. vein-graft compliance matching). The Silkothane
\u3csup\u3e®\u3c/sup\u3e
graft demonstrated early cannulation potential in line with self-sealing commercial synthetic arteriovenous grafts, and a degradability driven by enzymatic activity. Moreover, the fibroin-only layers and extracellular matrix-like morphology, presented by the graft, revealed to be crucial in providing a non-haemolytic character, long clotting time, and favourable adhesion of human umbilical vein endothelial cells with increasing viability after 3 and 7 d. Accordingly, the proposed approach may represent a step forward towards an in situ engineered hybrid vascular access with potentialities for vein-graft anastomosis stability, early cannulation, and biointegration.
\u3c/p\u3