15 research outputs found
A Model of Brain Circulation and Metabolism: NIRS Signal Changes during Physiological Challenges
We construct a model of brain circulation and energy metabolism. The model is
designed to explain experimental data and predict the response of the
circulation and metabolism to a variety of stimuli, in particular, changes in
arterial blood pressure, CO2 levels, O2 levels, and
functional activation. Significant model outputs are predictions about blood
flow, metabolic rate, and quantities measurable noninvasively using
near-infrared spectroscopy (NIRS), including cerebral blood volume and
oxygenation and the redox state of the CuA centre in cytochrome
c oxidase. These quantities are now frequently measured in
clinical settings; however the relationship between the measurements and the
underlying physiological events is in general complex. We anticipate that the
model will play an important role in helping to understand the NIRS signals, in
particular, the cytochrome signal, which has been hard to interpret. A range of
model simulations are presented, and model outputs are compared to published
data obtained from both in vivo and in vitro
settings. The comparisons are encouraging, showing that the model is able to
reproduce observed behaviour in response to various stimuli