171 research outputs found
Fast identification of Wiener-Hammerstein systems using discrete optimisation
A fast identification algorithm for Wiener-Hammerstein systems is proposed. The computational cost of separating the front and the back linear time-invariant (LTI) block dynamics is significantly improved by using discrete optimisation. The discrete optimisation is implemented as a genetic algorithm. Numerical results confirm the efficiency and accuracy of the proposed approach
On the calculation of the D-optimal multisine excitation power spectrum for broadband impedance spectroscopy measurements
The successful application of impedance spectroscopy in daily practice requires accurate
measurements for modeling complex physiological or electrochemical phenomena in a single
frequency or several frequencies at different (or simultaneous) time instants. Nowadays, two
approaches are possible for frequency domain impedance spectroscopy measurements: (1)
using the classical technique of frequency sweep and (2) using (non-)periodic broadband
signals, i.e. multisine excitations. Both techniques share the common problem of how to
design the experimental conditions, e.g. the excitation power spectrum, in order to achieve
accuracy of maximum impedance model parameters from the impedance data modeling
process. The original contribution of this paper is the calculation and design of the D-optimal
multisine excitation power spectrum for measuring impedance systems modeled as 2R-1C
equivalent electrical circuits. The extension of the results presented for more complex
impedance models is also discussed. The influence of the multisine power spectrum on the
accuracy of the impedance model parameters is analyzed based on the Fisher information
matrix. Furthermore, the optimal measuring frequency range is given based on the properties
of the covariance matrix. Finally, simulations and experimental results are provided to validate
the theoretical aspects presented.Peer ReviewedPostprint (published version
Sawtooth period pacing and locking by EC power control on TCV
Abstract #TP9.127 submitted for the DPP11 Meeting of The American Physical Society
LPMLE3 : a novel 1-D approach to study water flow in streambeds using heat as a tracer
We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it does not assume a semi-infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature-time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature-time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum-likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1-D methods
Molecular impact of launch related dynamic vibrations and static hypergravity in planarians
Although many examples of simulated and real microgravity demonstrating their profound effect on biological systems are described in literature, few reports deal with hypergravity and vibration effects, the levels of which are severely increased during the launch preceding the desired microgravity period. Here, we used planarians, flatworms that can regenerate any body part in a few days. Planarians are an ideal model to study the impact of launch-related hypergravity and vibration during a regenerative process in a “whole animal” context. Therefore, planarians were subjected to 8.5 minutes of 4 g hypergravity (i.e. a human-rated launch level) in the Large Diameter Centrifuge (LDC) and/or to vibrations (20–2000 Hz, 11.3 Grms) simulating the conditions of a standard rocket launch. The transcriptional levels of genes (erg-1, runt-1, fos, jnk, and yki) related with the early stress response were quantified through qPCR. The results show that early response genes are severely deregulated after static and dynamic loads but more so after a combined exposure of dynamic (vibration) and static (hypergravity) loads, more closely simulating real launch exposure profiles. Importantly, at least four days after the exposure, the transcriptional levels of those genes are still deregulated. Our results highlight the deep impact that short exposures to hypergravity and vibration have in organisms, and thus the implications that space flight launch could have. These phenomena should be taken into account when planning for well-controlled microgravity studies
Alzheimer's early detection in post-acute COVID-19 syndrome: a systematic review and expert consensus on preclinical assessments.
The risk of developing Alzheimer's disease (AD) in older adults increasingly is being discussed in the literature on Post-Acute COVID-19 Syndrome (PACS). Remote digital Assessments for Preclinical AD (RAPAs) are becoming more important in screening for early AD, and should always be available for PACS patients, especially for patients at risk of AD. This systematic review examines the potential for using RAPA to identify impairments in PACS patients, scrutinizes the supporting evidence, and describes the recommendations of experts regarding their use.
We conducted a thorough search using the PubMed and Embase databases. Systematic reviews (with or without meta-analysis), narrative reviews, and observational studies that assessed patients with PACS on specific RAPAs were included. The RAPAs that were identified looked for impairments in olfactory, eye-tracking, graphical, speech and language, central auditory, or spatial navigation abilities. The recommendations' final grades were determined by evaluating the strength of the evidence and by having a consensus discussion about the results of the Delphi rounds among an international Delphi consensus panel called IMPACT, sponsored by the French National Research Agency. The consensus panel included 11 international experts from France, Switzerland, and Canada.
Based on the available evidence, olfaction is the most long-lasting impairment found in PACS patients. However, while olfaction is the most prevalent impairment, expert consensus statements recommend that AD olfactory screening should not be used on patients with a history of PACS at this point in time. Experts recommend that olfactory screenings can only be recommended once those under study have reported full recovery. This is particularly important for the deployment of the olfactory identification subdimension. The expert assessment that more long-term studies are needed after a period of full recovery, suggests that this consensus statement requires an update in a few years.
Based on available evidence, olfaction could be long-lasting in PACS patients. However, according to expert consensus statements, AD olfactory screening is not recommended for patients with a history of PACS until complete recovery has been confirmed in the literature, particularly for the identification sub-dimension. This consensus statement may require an update in a few years
Correcting for non-periodic behaviour in perturbative experiments: application to heat pulse propagation and modulated gas-puff experiments
This paper introduces a recent innovation in dealing with non-periodic behavior often referred to as transients. These transients can be the result from unforced response due to the initial condition and other drifts which are a source of error when performing and interpreting Fourier analysis on measurement data. Fourier analysis is particularly relevant in system identification used to build feedback controllers and the analysis of various pulsed experiments such as heat pulse propagation studies. The basic idea behind the methodology is that transients are continuous complex-valued smooth functions in the Fourier domain which can be estimated from the Fourier data. Then, these smooth functions can be approximately subtracted from the data such that only periodic components are retained. The merit of the approach is shown in two experimental examples, i.e., heat pulse propagation (core transport analysis) and radiation front movement due to gas puffing. The examples show that the quality of the data is significantly improved such that it allows new interpretation of the results even for non-ideal measurements.</p
Critical point network for drainage between rough surfaces
In this paper, we present a network method for computing two-phase flows between two rough surfaces with significant contact areas. Low-capillary number drainage is investigated here since one-phase flows have been previously investigated in other contributions. An invasion percolation algorithm is presented for modeling slow displacement of a wetting fluid by a non wetting one between two rough surfaces. Short-correlated Gaussian process is used to model random rough surfaces.The algorithm is based on a network description of the fracture aperture field. The network is constructed from the identification of critical points (saddles and maxima) of the aperture field. The invasion potential is determined from examining drainage process in a flat mini-channel. A direct comparison between numerical prediction and experimental visualizations on an identical geometry has been performed for one realization of an artificial fracture with a moderate fractional contact area of about 0.3. A good agreement is found between predictions and observations
- …