7 research outputs found

    Maternal Smoke Exposure Impairs the Long-Term Fertility of Female Offspring in a Murine Model.

    Full text link
    The theory of fetal origins of adult disease was first proposed in 1989, and in the decades since, a wide range of other diseases from obesity to asthma have been found to originate in early development. Because mammalian oocyte development begins in fetal life it has been suggested that environmental and lifestyle factors of the mother could directly impact the fertility of subsequent generations. Cigarette smoke is a known ovotoxicant in active smokers, yet disturbingly 13% of Australian and 12% of US women continue to smoke throughout pregnancy. The focus of our investigation was to characterize the adverse effects of smoking on ovary and oocyte quality in female offspring exposed in utero. Pregnant mice were nasally exposed to cigarette smoke for 12 wk throughout pregnancy/lactation, and ovary and oocyte quality of the F1 (maternal smoke exposed) generation was examined. Neonatal ovaries displayed abnormal somatic cell proliferation and increased apoptosis, leading to a reduction in follicle numbers. Further investigation found that altered somatic cell proliferation and reduced follicle number continued into adulthood; however, apoptosis did not. This reduction in follicles resulted in decreased oocyte numbers, with these oocytes found to have elevated levels of oxidative stress, altered metaphase II spindle, and reduced sperm-egg interaction. These ovarian and oocyte changes ultimately lead to subfertility, with maternal smoke-exposed animals having smaller litters and also taking longer to conceive. In conclusion, our results demonstrate that in utero and lactational exposure to cigarette smoke can have long-lasting effects on the fertility of the next generation of females

    Investigating the Links between Lower Iron Status in Pregnancy and Respiratory Disease in Offspring Using Murine Models.

    Full text link
    Maternal iron deficiency occurs in 40-50% of all pregnancies and is associated with an increased risk of respiratory disease and asthma in children. We used murine models to examine the effects of lower iron status during pregnancy on lung function, inflammation and structure, as well as its contribution to increased severity of asthma in the offspring. A low iron diet during pregnancy impairs lung function, increases airway inflammation, and alters lung structure in the absence and presence of experimental asthma. A low iron diet during pregnancy further increases these major disease features in offspring with experimental asthma. Importantly, a low iron diet increases neutrophilic inflammation, which is indicative of more severe disease, in asthma. Together, our data demonstrate that lower dietary iron and systemic deficiency during pregnancy can lead to physiological, immunological and anatomical changes in the lungs and airways of offspring that predispose to greater susceptibility to respiratory disease. These findings suggest that correcting iron deficiency in pregnancy using iron supplements may play an important role in preventing or reducing the severity of respiratory disease in offspring. They also highlight the utility of experimental models for understanding how iron status in pregnancy affects disease outcomes in offspring and provide a means for testing the efficacy of different iron supplements for preventing disease

    CD8 T cells and dendritic cells: key players in the attenuated maternal immune response to influenza infection.

    Full text link
    Pregnancy provides a unique challenge for maternal immunity, requiring the ability to tolerate the presence of a semi-allogeneic foetus, and yet still being capable of inducing an immune response against invading pathogens. To achieve this, numerous changes must occur in the activity and function of maternal immune cells throughout the course of pregnancy. Respiratory viruses take advantage of these changes, altering the sensitive balance of maternal immunity, leaving the mother with increased susceptibility to viral infections and increased disease severity. Influenza virus is one of the most common respiratory virus infections during pregnancy, leading to an increased risk of ICU hospitalisations, pneumonia, acute respiratory distress syndrome and even death. Whilst much research has been performed to understand the changes that must take place in maternal immunity during pregnancy, considerable work is still needed to fully comprehend this tremendous feat. To date, few studies have focused on the alterations that occur in maternal immunity during respiratory virus infections. This review highlights the role of dendritic cells (DCs) and CD8 T cells during pregnancy, and the changes that occur in these antiviral cells following influenza virus infections
    corecore