162 research outputs found

    3D Reconstruction of the Density Field: An SVD Approach to Weak Lensing Tomography

    Full text link
    We present a new method for constructing three-dimensional mass maps from gravitational lensing shear data. We solve the lensing inversion problem using truncation of singular values (within the context of generalized least squares estimation) without a priori assumptions about the statistical nature of the signal. This singular value framework allows a quantitative comparison between different filtering methods: we evaluate our method beside the previously explored Wiener filter approaches. Our method yields near-optimal angular resolution of the lensing reconstruction and allows cluster sized halos to be de-blended robustly. It allows for mass reconstructions which are 2-3 orders-of-magnitude faster than the Wiener filter approach; in particular, we estimate that an all-sky reconstruction with arcminute resolution could be performed on a time-scale of hours. We find however that linear, non-parametric reconstructions have a fundamental limitation in the resolution achieved in the redshift direction.Comment: 11 pages, 6 figures. Accepted for publication in Ap

    Interpolating Masked Weak Lensing Signal with Karhunen-Loeve Analysis

    Full text link
    We explore the utility of Karhunen Loeve (KL) analysis in solving practical problems in the analysis of gravitational shear surveys. Shear catalogs from large-field weak lensing surveys will be subject to many systematic limitations, notably incomplete coverage and pixel-level masking due to foreground sources. We develop a method to use two dimensional KL eigenmodes of shear to interpolate noisy shear measurements across masked regions. We explore the results of this method with simulated shear catalogs, using statistics of high-convergence regions in the resulting map. We find that the KL procedure not only minimizes the bias due to masked regions in the field, it also reduces spurious peak counts from shape noise by a factor of ~ 3 in the cosmologically sensitive regime. This indicates that KL reconstructions of masked shear are not only useful for creating robust convergence maps from masked shear catalogs, but also offer promise of improved parameter constraints within studies of shear peak statistics.Comment: 13 pages, 9 figures; submitted to Ap

    Using Open Source Libraries in the Development of Control Systems Based on Machine Vision

    Full text link
    The possibility of the boundaries detection in the images of crushed ore particles using a convolutional neural network is analyzed. The structure of the neural network is given. The construction of training and test datasets of ore particle images is described. Various modifications of the underlying neural network have been investigated. Experimental results are presented. © 2020, IFIP International Federation for Information Processing.Foundation for Assistance to Small Innovative Enterprises in Science and Technology, FASIEFunding. The work was performed under state contract 3170ΓC1/48564, grant from the FASIE

    Improving SIEM for critical SCADA water infrastructures using machine learning

    Get PDF
    Network Control Systems (NAC) have been used in many industrial processes. They aim to reduce the human factor burden and efficiently handle the complex process and communication of those systems. Supervisory control and data acquisition (SCADA) systems are used in industrial, infrastructure and facility processes (e.g. manufacturing, fabrication, oil and water pipelines, building ventilation, etc.) Like other Internet of Things (IoT) implementations, SCADA systems are vulnerable to cyber-attacks, therefore, a robust anomaly detection is a major requirement. However, having an accurate anomaly detection system is not an easy task, due to the difficulty to differentiate between cyber-attacks and system internal failures (e.g. hardware failures). In this paper, we present a model that detects anomaly events in a water system controlled by SCADA. Six Machine Learning techniques have been used in building and evaluating the model. The model classifies different anomaly events including hardware failures (e.g. sensor failures), sabotage and cyber-attacks (e.g. DoS and Spoofing). Unlike other detection systems, our proposed work helps in accelerating the mitigation process by notifying the operator with additional information when an anomaly occurs. This additional information includes the probability and confidence level of event(s) occurring. The model is trained and tested using a real-world dataset

    Estimating Level of Engagement from Ocular Landmarks

    Get PDF
    E-learning offers many advantages like being economical, flexible and customizable, but also has challenging aspects such as lack of – social-interaction, which results in contemplation and sense of remoteness. To overcome these and sustain learners’ motivation, various stimuli can be incorporated. Nevertheless, such adjustments initially require an assessment of engagement level. In this respect, we propose estimating engagement level from facial landmarks exploiting the facts that (i) perceptual decoupling is promoted by blinking during mentally demanding tasks; (ii) eye strain increases blinking rate, which also scales with task disengagement; (iii) eye aspect ratio is in close connection with attentional state and (iv) users’ head position is correlated with their level of involvement. Building empirical models of these actions, we devise a probabilistic estimation framework. Our results indicate that high and low levels of engagement are identified with considerable accuracy, whereas medium levels are inherently more challenging, which is also confirmed by inter-rater agreement of expert coders

    First-Year Sloan Digital Sky Survey-II (SDSS-II) Supernova Results: Constraints on Non-Standard Cosmological Models

    Get PDF
    We use the new SNe Ia discovered by the SDSS-II Supernova Survey together with additional supernova datasets as well as observations of the cosmic microwave background and baryon acoustic oscillations to constrain cosmological models. This complements the analysis presented by Kessler et al. in that we discuss and rank a number of the most popular non-standard cosmology scenarios. When this combined data-set is analyzed using the MLCS2k2 light-curve fitter, we find that more exotic models for cosmic acceleration provide a better fit to the data than the Lambda-CDM model. For example, the flat DGP model is ranked higher by our information criteria tests than the standard model. When the dataset is instead analyzed using the SALT-II light-curve fitter, the standard cosmological constant model fares best. Our investigation also includes inhomogeneous Lemaitre-Tolman-Bondi (LTB) models. While our LTB models can be made to fit the supernova data as well as any other model, the extra parameters they require are not supported by our information criteria analysis.Comment: ApJ in press, updated reference

    A Compressed Sensing Approach to 3D Weak Lensing

    Full text link
    (Abridged) Weak gravitational lensing is an ideal probe of the dark universe. In recent years, several linear methods have been developed to reconstruct the density distribution in the Universe in three dimensions, making use of photometric redshift information to determine the radial distribution of lensed sources. In this paper, we aim to address three key issues seen in these methods; namely, the bias in the redshifts of detected objects, the line of sight smearing seen in reconstructions, and the damping of the amplitude of the reconstruction relative to the underlying density. We consider the problem under the framework of compressed sensing (CS). Under the assumption that the data are sparse in an appropriate dictionary, we construct a robust estimator and employ state-of-the-art convex optimisation methods to reconstruct the density contrast. For simplicity in implementation, and as a proof of concept of our method, we reduce the problem to one-dimension, considering the reconstruction along each line of sight independently. Despite the loss of information this implies, we demonstrate that our method is able to accurately reproduce cluster haloes up to a redshift of z=1, deeper than state-of-the-art linear methods. We directly compare our method with these linear methods, and demonstrate minimal radial smearing and redshift bias in our reconstructions, as well as a reduced damping of the reconstruction amplitude as compared to the linear methods. In addition, the CS framework allows us to consider an underdetermined inverse problem, thereby allowing us to reconstruct the density contrast at finer resolution than the input data.Comment: Submitted to A&A (6 July 2011

    First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: consistency and constraints with other intermediate-redshift datasets

    Get PDF
    We present an analysis of the luminosity distances of Type Ia Supernovae from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey in conjunction with other intermediate redshift (z<0.4) cosmological measurements including redshift-space distortions from the Two-degree Field Galaxy Redshift Survey (2dFGRS), the Integrated Sachs-Wolfe (ISW) effect seen by the SDSS, and the latest Baryon Acoustic Oscillation (BAO) distance scale from both the SDSS and 2dFGRS. We have analysed the SDSS-II SN data alone using a variety of "model-independent" methods and find evidence for an accelerating universe at >97% level from this single dataset. We find good agreement between the supernova and BAO distance measurements, both consistent with a Lambda-dominated CDM cosmology, as demonstrated through an analysis of the distance duality relationship between the luminosity (d_L) and angular diameter (d_A) distance measures. We then use these data to estimate w within this restricted redshift range (z<0.4). Our most stringent result comes from the combination of all our intermediate-redshift data (SDSS-II SNe, BAO, ISW and redshift-space distortions), giving w = -0.81 +0.16 -0.18(stat) +/- 0.15(sys) and Omega_M=0.22 +0.09 -0.08 assuming a flat universe. This value of w, and associated errors, only change slightly if curvature is allowed to vary, consistent with constraints from the Cosmic Microwave Background. We also consider more limited combinations of the geometrical (SN, BAO) and dynamical (ISW, redshift-space distortions) probes.Comment: 13 pages, 7 figures, accepted for publication in MNRA

    The Astropy Project: Building an inclusive, open-science project and status of the v2.0 core package

    Get PDF
    The Astropy project supports and fosters the development of open-source and openly-developed Python packages that provide commonly-needed functionality to the astronomical community. A key element of the Astropy project is the core package Astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of inter-operable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy project
    corecore