29 research outputs found

    The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and medically refractory lung disease with a grim prognosis. Although the etiology of IPF remains perplexing, abnormal adaptive immune responses are evident in many afflicted patients. We hypothesized that perturbations of human leukocyte antigen (HLA) allele frequencies, which are often seen among patients with immunologic diseases, may also be present in IPF patients. Methods/Principal Findings: HLA alleles were determined in subpopulations of IPF and normal subjects using molecular typing methods. HLA-DRB1*15 was over-represented in a discovery cohort of 79 Caucasian IPF subjects who had lung transplantations at the University of Pittsburgh (36.7%) compared to normal reference populations. These findings were prospectively replicated in a validation cohort of 196 additional IPF subjects from four other U.S. medical centers that included both ambulatory patients and lung transplantation recipients. High-resolution typing was used to further define specific HLA-DRB1*15 alleles. DRB1*1501 prevalence in IPF subjects was similar among the 143 ambulatory patients and 132 transplant recipients (31.5% and 34.8%, respectively, p = 0.55). The aggregate prevalence of DRB1*1501 in IPF patients was significantly greater than among 285 healthy controls (33.1% vs. 20.0%, respectively, OR 2.0; 95%CI 1.3-2.9, p = 0.0004). IPF patients with DRB1*1501 (n = 91) tended to have decreased diffusing capacities for carbon monoxide (DLCO) compared to the 184 disease subjects who lacked this allele (37.8±1.7% vs. 42.8±1.4%, p = 0.036). Conclusions/Significance: DRB1*1501 is more prevalent among IPF patients than normal subjects, and may be associated with greater impairment of gas exchange. These data are novel evidence that immunogenetic processes can play a role in the susceptibility to and/or manifestations of IPF. Findings here of a disease association at the HLA-DR locus have broad pathogenic implications, illustrate a specific chromosomal area for incremental, targeted genomic study, and may identify a distinct clinical phenotype among patients with this enigmatic, morbid lung disease

    Epitope spreading: lessons from autoimmune skin diseases.

    No full text
    Autoimmune diseases are initiated when patients develop aberrant T and/or B cell responses against self proteins. These responses presumably are directed to single immunogenic epitopes on these proteins. Recent data in animal models of autoimmune diseases suggest that the targets of immune responses in autoimmunity do not remain fixed, but can be extended to include other epitopes on the same protein or other proteins in the same tissue, a phenomenon termed "epitope spreading." The "epitope spreading" phenomenon also applies to situations in which tissue damage from a primary inflammatory process causes the release and exposure of a previously "sequestered" antigen, leading to a secondary autoimmune response against the newly released antigen. In experimental autoimmune animal diseases, "epitope spreading" seems to have significant physiologic importance in determining the course and duration of disease. In this paper, we review the current concepts in animal models of autoimmune diseases in order to define the "epitope spreading" phenomenon, and we then propose how this phenomenon might play a significant role in the development and the course of autoimmune skin diseases. Hopefully, an understanding of "epitope spreading" will help the dermatology community to better understand the pathogenesis of autoimmune skin diseases and to rationally fashion disease-specific immune therapy in the future
    corecore