8 research outputs found

    The Importance of Biodiversity E-infrastructures for Megadiverse Countries

    Get PDF
    Addressing the challenges of biodiversity conservation and sustainable development requires global cooperation, support structures, and new governance models to integrate diverse initiatives and achieve massive, open exchange of data, tools, and technology. The traditional paradigm of sharing scientific knowledge through publications is not sufficient to meet contemporary demands that require not only the results but also data, knowledge, and skills to analyze the data. E-infrastructures are key in facilitating access to data and providing the framework for collaboration. Here we discuss the importance of e-infrastructures of public interest and the lack of long-term funding policies. We present the example of Brazil’s speciesLink network, an e-infrastructure that provides free and open access to biodiversity primary data and associated tools. SpeciesLink currently integrates 382 datasets from 135 national institutions and 13 institutions from abroad, openly sharing ~7.4 million records, 94% of which are associated to voucher specimens. Just as important as the data is the network of data providers and users. In 2014, more than 95% of its users were from Brazil, demonstrating the importance of local e-infrastructures in enabling and promoting local use of biodiversity data and knowledge. From the outset, speciesLink has been sustained through project-based funding, normally public grants for 2–4-year periods. In between projects, there are short-term crises in trying to keep the system operational, a fact that has also been observed in global biodiversity portals, as well as in social and physical sciences platforms and even in computing services portals. In the last decade, the open access movement propelled the development of many web platforms for sharing data. Adequate policies unfortunately did not follow the same tempo, and now many initiatives may perish

    OMWS: A Web Service Interface for Ecological Niche Modelling

    Get PDF
    [EN] Ecological niche modelling (ENM) experiments often involve a high number of tasks to be performed. Such tasks may consume a significant amount of computing resources and take a long time to complete, especially when using personal computers. OMWS is a Web service interface that allows more powerful computing back-ends to be remotely exploited by other applications to carry out ENM tasks. Its latest version includes a new operation that can be used to specify complex workflows in a single request, adding the possibility of using workflow management systems on parallel computing back-end. In this paper we describe the OMWS protocol and compare its most recent version with the previous one by running the same ENM experiment using two functionally equivalent clients, each designed for one of the OMWS interface versions. Different back-end configurations were used to investigate how the performance scales for each protocol version when more processing power is made available. Results show that the new version outperforms (in a factor of 2) the previous one when more computing resources are used.The latest version of OMWS contains improvements coming from different sets of requirements originated from two projects that funded their corresponding implementation: EUBrazilOpenBio14, with grants from the European Commission and the National Council for Scientific and Technological Development of Brazil (CNPq) of the Brazilian Ministry of Science and Technology (MCT), and BioVeL, with grants from the European Commission. Server infrastructure was operated through a provisioning system developed in the frame of the Spanish project CLUVIEM (TIN2013-44390-R) funded by the "Ministerio de Economía y Competitividad".Giovanni, RD.; Torres Serrano, E.; Amaral, RB.; Blanquer Espert, I.; Rebello, V.; Canhos, VP. (2015). OMWS: A Web Service Interface for Ecological Niche Modelling. Biodiversity Informatics. 10:35-44. https://doi.org/10.17161/bi.v10i0.4853S35441

    BioClimate: a Science Gateway for Climate Change and Biodiversity research in the EUBrazilCloudConnect project

    Get PDF
    [EN] Climate and biodiversity systems are closely linked across a wide range of scales. To better understand the mutual interaction between climate change and biodiversity there is a strong need for multidisciplinary skills, scientific tools, and access to a large variety of heterogeneous, often distributed, data sources. Related to that, the EUBrazilCloudConnect project provides a user-oriented research environment built on top of a federated cloud infrastructure across Europe and Brazil, to serve key needs in different scientific domains, which is validated through a set of use cases. Among them, the most data-centric one is focused on climate change and biodiversity research. As part of this use case, the BioClimate Science Gateway has been implemented to provide end-users transparent access to (i) a highly integrated user-friendly environment, (ii) a large variety of data sources, and (iii) different analytics & visualization tools to serve a large spectrum of users needs and requirements. This paper presents a complete overview of BioClimate and the related scientific environment, in particular its Science Gateway, delivered to the end-user community at the end of the project.This work was supported by the EU FP7 EUBrazilCloudConnect Project (Grant Agreement 614048), and CNPq/Brazil (Grant Agreement no 490115/2013-6).Fiore, S.; Elia, D.; Blanquer Espert, I.; Brasileiro, FV.; Nuzzo, A.; Nassisi, P.; Rufino, LAA.... (2019). BioClimate: a Science Gateway for Climate Change and Biodiversity research in the EUBrazilCloudConnect project. Future Generation Computer Systems. 94:895-909. https://doi.org/10.1016/j.future.2017.11.034S8959099

    The Importance of Biodiversity E-infrastructures for Megadiverse Countries.

    Get PDF
    Addressing the challenges of biodiversity conservation and sustainable development requires global cooperation, support structures, and new governance models to integrate diverse initiatives and achieve massive, open exchange of data, tools, and technology. The traditional paradigm of sharing scientific knowledge through publications is not sufficient to meet contemporary demands that require not only the results but also data, knowledge, and skills to analyze the data. E-infrastructures are key in facilitating access to data and providing the framework for collaboration. Here we discuss the importance of e-infrastructures of public interest and the lack of long-term funding policies. We present the example of Brazil's speciesLink network, an e-infrastructure that provides free and open access to biodiversity primary data and associated tools. SpeciesLink currently integrates 382 datasets from 135 national institutions and 13 institutions from abroad, openly sharing ~7.4 million records, 94% of which are associated to voucher specimens. Just as important as the data is the network of data providers and users. In 2014, more than 95% of its users were from Brazil, demonstrating the importance of local e-infrastructures in enabling and promoting local use of biodiversity data and knowledge. From the outset, speciesLink has been sustained through project-based funding, normally public grants for 2-4-year periods. In between projects, there are short-term crises in trying to keep the system operational, a fact that has also been observed in global biodiversity portals, as well as in social and physical sciences platforms and even in computing services portals. In the last decade, the open access movement propelled the development of many web platforms for sharing data. Adequate policies unfortunately did not follow the same tempo, and now many initiatives may perish

    The Importance Of Biodiversity E-infrastructures For Megadiverse Countries

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Addressing the challenges of biodiversity conservation and sustainable development requires global cooperation, support structures, and new governance models to integrate diverse initiatives and achieve massive, open exchange of data, tools, and technology. The traditional paradigm of sharing scientific knowledge through publications is not sufficient to meet contemporary demands that require not only the results but also data, knowledge, and skills to analyze the data. E-infrastructures are key in facilitating access to data and providing the framework for collaboration. Here we discuss the importance of e-infrastructures of public interest and the lack of long-term funding policies. We present the example of Brazil's speciesLink network, an e-infrastructure that provides free and open access to biodiversity primary data and associated tools. SpeciesLink currently integrates 382 datasets from 135 national institutions and 13 institutions from abroad, openly sharing similar to 7.4 million records, 94% of which are associated to voucher specimens. Just as important as the data is the network of data providers and users. In 2014, more than 95% of its users were from Brazil, demonstrating the importance of local e-infrastructures in enabling and promoting local use of biodiversity data and knowledge. From the outset, speciesLink has been sustained through project-based funding, normally public grants for 2-4-year periods. In between projects, there are short-term crises in trying to keep the system operational, a fact that has also been observed in global biodiversity portals, as well as in social and physical sciences platforms and even in computing services portals. In the last decade, the open access movement propelled the development of many web platforms for sharing data. Adequate policies unfortunately did not follow the same tempo, and now many initiatives may perish.137Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    The evolution of Brazilian flora primary data available online and species described by Brazilian specialists.

    No full text
    <p>(A) Growth of the Virtual Herbarium from May 2003 to Feb 2015, showing the monthly average of online and georeferenced records; the orange line shows the evolution of the number of datasets. (B) Number of angiosperms species described by Brazilian (orange line) and foreign (grey line) scientists from 1990 to 2013.</p

    Research infrastructure and biodiversity data usage in Brazil.

    No full text
    <p>(A) Distribution of Rede Nacional de Ensino e Pesquisa (RNP) metropolitan networks (December 2014). (B) Distribution of <i>species</i>Link’s data providers (per institution) and amount of records shared (December 2014). (C) <i>species</i>Link data usage (sessions) across Brazil (2014). <i>Image credit</i>: <i>Eduardo G</i>. <i>Baena</i>.</p
    corecore