127 research outputs found
Anisotropic AC Behavior of Multifilamentary Bi-2223/Ag Tapes
In this communication, we report on the anisotropy of the superconducting
properties of multifilamentary Bi-based tapes experimentally investigated by AC
magnetic susceptibility measurements. The susceptibility was measured using a commercial system and a couple of orthogonal
pick-up coils. The vs. temperature curves were shown to exhibit two
peaks. The smaller of the peaks, occurring near T = 72K, was only visible for
particular field directions and within a given frequency window. Such results
point out the role played by the phase difference between the applied magnetic
field and the internal magnetic field seen by the filaments.Comment: 4 pages (2 columns); 4 figure
Modification of the trapped field in bulk high-temperature superconductors as a result of the drilling of a pattern of artificial columnar holes
The trapped magnetic field is examined in bulk high-temperature
superconductors that are artificially drilled along their c-axis. The influence
of the hole pattern on the magnetization is studied and compared by means of
numerical models and Hall probe mapping techniques. To this aim, we consider
two bulk YBCO samples with a rectangular cross-section that are drilled each by
six holes arranged either on a rectangular lattice (sample I) or on a centered
rectangular lattice (sample II). For the numerical analysis, three different
models are considered for calculating the trapped flux: (i), a two-dimensional
(2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D
finite-element model neglecting demagnetizing effects but incorporating
magnetic relaxation in the form of an E-J power law, and, (iii), a 3D finite
element analysis that takes into account both the finite height of the sample
and flux creep effects. For the experimental analysis, the trapped magnetic
flux density is measured above the sample surface by Hall probe mapping
performed before and after the drilling process. The maximum trapped flux
density in the drilled samples is found to be smaller than that in the plain
samples. The smallest magnetization drop is found for sample II, with the
centered rectangular lattice. This result is confirmed by the numerical models.
In each sample, the relative drops that are calculated independently with the
three different models are in good agreement. As observed experimentally, the
magnetization drop calculated in the sample II is the smallest one and its
relative value is comparable to the measured one. By contrast, the measured
magnetization drop in sample (1) is much larger than that predicted by the
simulations, most likely because of a change of the microstructure during the
drilling process.Comment: Proceedings of EUCAS 09 conferenc
Numerical simulation of the magnetization of high-temperature superconductors: 3D finite element method using a single time-step iteration
We make progress towards a 3D finite-element model for the magnetization of a
high temperature superconductor (HTS): We suggest a method that takes into
account demagnetisation effects and flux creep, while it neglects the effects
associated with currents that are not perpendicular to the local magnetic
induction. We consider samples that are subjected to a uniform magnetic field
varying linearly with time. Their magnetization is calculated by means of a
weak formulation in the magnetostatic approximation of the Maxwell equations
(A-phi formulation). An implicit method is used for the temporal resolution
(Backward Euler scheme) and is solved in the open source solver GetDP. Picard
iterations are used to deal with the power law conductivity of HTS. The finite
element formulation is validated for an HTS tube with large pinning strength
through the comparison with results obtained with other well-established
methods. We show that carrying the calculations with a single time-step (as
opposed to many small time-steps) produce results with excellent accuracy in a
drastically reduced simulation time. The numerical method is extended to the
study of the trapped magnetization of cylinders that are drilled with different
arrays of columnar holes arranged parallel to the cylinder axis
Use of 2G coated conductors for efficient shielding of DC magnetic fields
This paper reports the results of an experimental investigation of the
performance of two types of magnetic screens assembled from YBa2Cu3O7-d (YBCO)
coated conductors. Since effective screening of the axial DC magnetic field
requires the unimpeded flow of an azimuthal persistent current, we demonstrate
a configuration of a screening shell made out of standard YBCO coated conductor
capable to accomplish that. The screen allows the persistent current to flow in
the predominantly azimuthal direction at a temperature of 77 K. The persistent
screen, incorporating a single layer of superconducting film, can attenuate an
external magnetic field of up to 5 mT by more than an order of magnitude. For
comparison purposes, another type of screen which incorporates low critical
temperature quasi-persistent joints was also built. The shielding technique we
describe here appears to be especially promising for the realization of large
scale high-Tc superconducting screens.Comment: 8 pages, 3 figure
Bulk high-Tc superconductors with drilled holes: how to arrange the holes to maximize the trapped magnetic flux ?
Drilling holes in a bulk high-Tc superconductor enhances the oxygen annealing
and the heat exchange with the cooling liquid. However, drilling holes also
reduces the amount of magnetic flux that can be trapped in the sample. In this
paper, we use the Bean model to study the magnetization and the current line
distribution in drilled samples, as a function of the hole positions. A single
hole perturbs the critical current flow over an extended region that is bounded
by a discontinuity line, where the direction of the current density changes
abruptly. We demonstrate that the trapped magnetic flux is maximized if the
center of each hole is positioned on one of the discontinuity lines produced by
the neighbouring holes. For a cylindrical sample, we construct a polar
triangular hole pattern that exploits this principle; in such a lattice, the
trapped field is ~20% higher than in a squared lattice, for which the holes do
not lie on discontinuity lines. This result indicates that one can
simultaneously enhance the oxygen annealing, the heat transfer, and maximize
the trapped field
Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields
Crossed magnetic field effects on bulk high-temperature superconductors have
been studied both experimentally and numerically. The sample geometry
investigated involves finite-size effects along both (crossed) magnetic field
directions. The experiments were carried out on bulk melt-processed Y-Ba-Cu-O
(YBCO) single domains that had been pre-magnetized with the applied field
parallel to their shortest direction (i.e. the c-axis) and then subjected to
several cycles of the application of a transverse magnetic field parallel to
the sample ab plane. The magnetic properties were measured using orthogonal
pick-up coils, a Hall probe placed against the sample surface and
Magneto-Optical Imaging (MOI). We show that all principal features of the
experimental data can be reproduced qualitatively using a two-dimensional
finite-element numerical model based on an E-J power law and in which the
current density flows perpendicularly to the plane within which the two
components of magnetic field are varied. The results of this study suggest that
the suppression of the magnetic moment under the action of a transverse field
can be predicted successfully by ignoring the existence of flux-free
configurations or flux-cutting effects. These investigations show that the
observed decay in magnetization results from the intricate modification of
current distribution within the sample cross-section. It is also shown that the
model does not predict any saturation of the magnetic induction, even after a
large number (~ 100) of transverse field cycles. These features are shown to be
consistent with the experimental data.Comment: 41 pages, 9 figures, accepted in Phys. Rev. B Changes : 8 references
added, a few precisions added, some typos correcte
The contribution of 211 particles to the mechanical reinforcement mechanism of 123 superconducting single domains
Hardness and fracture toughness of Dy-123 single-domains were studied by
Vickers micro-indentation. A significant anisotropy of the mechanical
properties was observed. Hardness tests give higher values when performed in
(001) planes rather than in planes parallel to the c-axis. Moreover cracks
pattern around the indentation follows preferential orientation in planes
parallel to the c-axis whereas a classical ''four-cracks'' pattern is observed
in the (001) planes. It has been possible to show the crucial role played by
the 211-particles in the deviating mechanism of cracks and the relevance of the
211-particle distribution high homogeneity in the material.Comment: 14 pages, including 5 figures and 1 Table. submitted to Supercond.
Sci. Techno
Magneto-transport study of nb-doped Bi/Pb2223 superconductor
The magneto-transport properties of Bi1.5Pb0.4Nb0.1Sr2Ca2Cu3O10-x polycrystalline, superconducting ceramic are reported. The material was found to be chemically homogeneous and partially textured. The mixed state properties were investigated by measuring the electrical resistivity, longitudinal and transverse (Nernst effect) thermoelectric power, and thermal conductivity. The magnetization and AC susceptibility measurements were also performed. The variation of these characteristics for magnetic fields up to 5 T are discussed and compared to those of the zero field case. The transport entropy and thermal Hall angle are extracted and quantitatively compared to previously reported data of closely related systems. (C) 2003 Elsevier Science B.V. All rights reserved
Magneto-thermal phenomena in bulk high temperature superconductors subjected to applied AC magnetic fields
In the present work we study, both theoretically and experimentally, the
temperature increase in a bulk high-temperature superconductor subjected to
applied AC magnetic fields of large amplitude. We calculate analytically the
equilibrium temperatures of the bulk sample as a function of the experimental
parameters using a simple critical-state model for an infinitely long type-II
superconducting slab or cylinder. The results show the existence of a limit
heat transfer coefficient (AUlim) separating two thermal regimes with different
characteristics. The theoretical analysis predicts a "forbidden" temperature
window within which the temperature of the superconductor can never stabilize
when the heat transfer coefficient is small. In addition, we determine an
analytical expression of two threshold fields Htr1 and Htr2 characterizing the
importance of magneto-thermal effects and show that a thermal runaway always
occurs when the field amplitude is larger than Htr2. The theoretical
predictions of the temperature evolution of the bulk sample during a
self-heating process agree well with the experimental data. The simple
analytical study presented in this paper enables order of magnitude thermal
effects to be estimated for simple superconductor geometries under applied AC
magnetic fields and can be used to predict the influence of experimental
parameters on the self-heating characteristics of bulk type-II superconductors.Comment: 32 pages, 6 figure
Recommended from our members
Trapped magnetic field distribution above two magnetized bulk superconductors close to each other
Bulk large-grain superconductors can be used as high-field permanent magnets. Although the properties of such individual trapped field magnets are well documented, much less is known concerning their behaviour when two are brought together. In this work, the interaction between two cylindrical bulk YBa2Cu3O7 (YBCO) superconductors is described. Two sets of experiments were carried out. The first involved the simultaneous magnetization of two bulk superconductors placed a short distance apart. Here, the applied magnetic field was aligned parallel to the c-axis of one bulk, while the other was oriented with its c-axis offset . For a centre-to-centre distance equal to twice the sample height, the presence of the second sample is found not to alter the current distribution inside the first. Consequently, the contribution of both samples simply sums, thus increasing the magnetic flux density between them. In the second set of experiments, the translational approach of the superconductors with parallel c-axes was investigated. The following configurations were considered: (i) face to face approach (with anti-parallel trapped field orientation) and (ii) sideways approach (with parallel trapped field orientation). An irreversible decrease of the trapped field was measured on separation . Repeated approach cycles showed that the irreversible loss of trapped field is largest for the first approach.Henry Royce Institute (Equipment grant ref. EP/P024947/1)
We thank the University of Liege for equipment and travel grants. Michel Houbart is recipient of a FRS-FNRS Research Fellow gran
- …