5,762 research outputs found

    Junior Recital

    Full text link
    List of performers and performances

    Vertical movements through subsurface stream sediments by benthic macroinvertebrates during experimental drying are influenced by sediment characteristics and species traits

    Get PDF
    1. Streambed drying is becoming more common due to climate change and increasing anthropogenic water resource pressures. Subsurface sediments are a potential refuge for benthic macroinvertebrates during drying events in temporary streams. 2. Sediment characteristics are important controls on the distribution of macroinvertebrates in subsurface habitats, but difficulties making observations impedes quantification of vertical movements. Species traits (e.g. subsurface habitat affinity) also influence vertical movements of macroinvertebrates into the subsurface sediments, but most species-specific responses remain uncharacterised. 3. Transparent artificial mesocosms were used to directly observe the vertical movements of individuals of three aquatic insect nymphs and two crustaceans. Mixtures of three types of transparent sediment of varying particle size were combined to produce six treatments with differing interstitial pore volumes and, hence, differing subsurface porosity. Macroinvertebrate vertical movements were measured during incremental reductions in water level from 5 cm above to 20 cm below the sediment surface. These species comprised a variety of trait categories including feeding group, species affinity to temporary streams and subsurface habitats. Active and passive vertical movements were determined by conducting experiments with both live individuals and their cadavers. 4. Sediment treatment influenced the vertical movements of individuals as reducing subsurface porosity decreased vertical movements for most species. Vertical movement into subsurface sediments in response to water level reduction was the result of active, not passive, movements for all species. 5. Species identity influenced the vertical movements made by individuals. Nemoura cambrica had the highest affinity for temporary streams and subsurface habitats and its vertical movements were unaffected by sediment treatment, generally reaching depths between 20 and 25 cm. Most individuals of species with a weaker subsurface affinity (i.e. the benthic grazer Heptagenia sulphurea and the filter-feeder Hydropsyche siltalai) became stranded as water levels were reduced in all sediment treatments. Vertical movements of Gammarus pulex and Asellus aquaticus were restricted primarily by pore volume, these taxa becoming stranded most commonly in sediments with smaller interstitial volumes. 6. Our results highlight the need for the development and implementation of river management strategies that increase streambed porosity, allowing macroinvertebrates to access to the saturated subsurface habitat during stream drying

    Effect of Re-impacting Debris on the Solidification of the Lunar Magma Ocean

    Full text link
    Anorthosites that comprise the bulk of the lunar crust are believed to have formed during solidification of a Lunar Magma Ocean (LMO) in which these rocks would have floated to the surface. This early flotation crust would have formed a thermal blanket over the remaining LMO, prolonging solidification. Geochronology of lunar anorthosites indicates a long timescale of LMO cooling, or re-melting and re-crystallization in one or more late events. To better interpret this geochronology, we model LMO solidification in a scenario where the Moon is being continuously bombarded by returning projectiles released from the Moon-forming giant impact. More than one lunar mass of material escaped the Earth-Moon system onto heliocentric orbits following the giant impact, much of it to come back on returning orbits for a period of 100 Myr. If large enough, these projectiles would have punctured holes in the nascent floatation crust of the Moon, exposing the LMO to space and causing more rapid cooling. We model these scenarios using a thermal evolution model of the Moon that allows for production (by cratering) and evolution (solidification and infill) of holes in the flotation crust that insulates the LMO. For effective hole production, solidification of the magma ocean can be significantly expedited, decreasing the cooling time by more than a factor of 5. If hole production is inefficient, but shock conversion of projectile kinetic energy to thermal energy is efficient, then LMO solidification can be somewhat prolonged, lengthening the cooling time by 50% or more

    Direct observations of the effect of fine sediment deposition on the vertical movement of Gammarus pulex (Amphipoda: Gammaridae) during substratum drying

    Get PDF
    Benthic macroinvertebrates inhabit the streambed sediments of temporary streams during drying events. Fine sediment (< 2 mm in diameter) deposition and clogging of interstitial pathways reduces the connectivity between benthic and subsurface habitats, potentially inhibiting macroinvertebrate vertical movements. Direct observations within subsurface sediments are, however, inherently difficult. As a result, confirmation of macroinvertebrate vertical movement, and the effect of fine sediment, is limited. We used laboratory mesocosms containing transparent gravel sized particles (10–15 mm) to facilitate the direct observation and tracking of vertical movements by Gammarus pulex in response to water level reduction and sedimentation. Seven sediment treatments comprised two fine sediment fractions (small: 0.125–0.5 mm, coarse sand: 0.5–1 mm) deposited onto the surface of the substrate, and a control treatment where no fine sediment was applied. We found that G. pulex moved into the subsurface gravel sediments in response to drying, but their ability to remain submerged during water level reduction was impeded by fine sediment deposition. In particular deposition of the coarser sand fraction clogged the sediment surface, limiting vertical movements. Our results highlight the potential effect of sedimentation on G. pulex resistance to drying events in streams

    Climatic aridity increases temporal nestedness of invertebrate communities in naturally drying rivers

    Get PDF
    Climate change is altering the water cycle globally, increasing the frequency and magnitude of floods and droughts. An outstanding question is whether biodiversity responses to hydrological disturbance depend on background climatic context – and if so, which contexts increase vulnerability to disturbance. Answering this question requires comparison of organismal responses across environmental gradients. However, opportunities to track disturbed communities against an undisturbed baseline remain rare. Here we gathered a global dataset capturing responses of aquatic invertebrate communities to river drying, which includes 112 sites spanning a gradient of climatic aridity. We measured the effects of river drying on taxonomic richness and temporal ÎČ‐diversity (turnover and nestedness components). We also measured the relative abundance of aquatic invertebrates with strategies that confer resilience (or resistance) to drying. Contrary to our expectations, we found that taxonomic richness recovered from drying similarly across the aridity gradient. The turnover component of ÎČ‐diversity (i.e. species replacements over time) largely accounted for differences in community composition before versus after drying. However, increasing aridity was associated with greater nestedness‐driven compositional changes at intermittent sites – that is, after drying communities became subsets of those before drying. These results show that climatic context can explain variation in community responses to the same hydrological disturbance (drying), and suggest that increased aridity will constrain biodiversity responses at regional scales. Further consideration of the climatic context in hydroecological research may help improve predictions of the local impacts of hydrological disturbance by identifying climate regions where communities are more (or less) sensitive to extremes, including river drying events

    Dietary exposures and allergy prevention in high-risk infants

    Get PDF
    Allergic conditions in children are a prevalent health concern in Canada. The burden of disease and the societal costs of proper diagnosis and management are considerable, making the primary prevention of allergic conditions a desirable health care objective. This position statement reviews current evidence on dietary exposures and allergy prevention in infants at high risk for developing allergic conditions. It revisits previous dietary recommendations for pregnancy, breastfeeding and formula feeding, and provides an approach for introducing solid foods to high-risk infants. While there is no evidence that delaying the introduction of any specific food beyond six months of age helps to prevent allergy, the protective effect of early introduction of potentially allergenic foods (at four to six months of age) remains under investigation. Recent research appears to suggest that regularly ingesting a new, potentially allergenic food may be as important as when that food is first introduced. © Canadian Paediatric Society 2013

    Cell Damage-induced Conformational Changes of the Pro-Apoptotic Protein Bak In Vivo Precede the Onset of Apoptosis

    Get PDF
    Investigation of events committing cells to death revealed that a concealed NH2-terminal epitope of the pro-apoptotic protein Bak became exposed in vivo before apoptosis. This occurred after treatment of human Jurkat or CEM-C7A T-lymphoma cells with the mechanistically disparate agents staurosporine, etoposide or dexamethasone. The rapid, up to 10-fold increase in Bak-associated immunofluorescence was measured with epitope-specific monoclonal antibodies using flow cytometry and microscopy. In contrast, using a polyclonal antibody to Bak, immunofluorescence was detected both before and after treatment. There were no differences in Bak protein content nor in subcellular location before or after treatment. Immunofluorescence showed Bcl-xL and Bak were largely associated with mitochondria and in untreated cells they coimmunoprecipitated in the presence of nonioinic detergent. This association was significantly decreased after cell perturbation suggesting that Bcl-xL dissociation from Bak occurred on exposure of Bak's NH2 terminus. Multiple forms of Bak protein were observed by two dimensional electrophoresis but these were unchanged by inducers of apoptosis. This indicated that integration of cellular damage signals did not take place directly on the Bak protein. Release of proteins, including Bcl-xL, from Bak is suggested to be an important event in commitment to death

    Exposure to hypoxia rapidly induces mitochondrial channel activity within a living synapse

    Get PDF
    Author Posting. © American Society for Biochemistry and Molecular Biology, 2005. This article is posted here by permission of American Society for Biochemistry and Molecular Biology for personal use, not for redistribution. The definitive version was published in Journal of Biological Chemistry 280 (2005): 4491-4497, doi:10.1074/jbc.M410661200.One of the earliest effects of hypoxia on neuronal function is to produce a run-down of synaptic transmission, and more prolonged hypoxia results in neuronal death. An increase in the permeability of the outer mitochondrial membrane, controlled by BCL-2 family proteins, occurs in response to stimuli that trigger cell death. By patch clamping mitochondrial membranes inside the presynaptic terminal of a squid giant synapse, we have now found that several minutes of hypoxia trigger the opening of large multiconductance channels. The channel activity is induced concurrently with the attenuation of synaptic responses that occurs under hypoxic conditions. Hypoxia-induced channels are inhibited by NADH, an agent that inhibits large conductance channels produced by a pro-apoptotic fragment of BCL-xL in these synaptic mitochondria. The appearance of hypoxia-induced channels was also prevented by the caspase/cysteine protease inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone (Z-VAD-fmk), which inhibits proteolysis of BCL-xL during hypoxia. Both NADH and Z-VAD-fmk reduced significantly the rate of decline of synaptic responses during hypoxia. Our results indicate that an increase in outer mitochondrial channel activity is a very early event in the response of neurons to hypoxia and suggest that this increase in activity may contribute to the decline in synaptic function during hypoxia.This work was supported by Grants NS18496 (to L.K.K.), NS37402 (to J.M.H.), and NS45876 (to E.A.J.) from the National Institutes of Health and by an American Heart Association Established Investigator Award (to E.A.J.)

    Metabolism within the tumor microenvironment and its implication on cancer progression: an ongoing therapeutic target

    Get PDF
    Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment. Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the tumor microenvironment and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that tumor microenvironment is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including anti-tumor agents with those targeting stromal cell metabolism, anti-angiogenic drugs and/or immunotherapy are being developed as promising therapeutics.MÂȘ Carmen Ocaña is recipient of a predoctoral FPU grant from the Spanish Ministry of Education, Culture and Sport. Supported by grants BIO2014-56092-R (MINECO and FEDER), P12-CTS-1507 (Andalusian Government and FEDER) and funds from group BIO-267 (Andalusian Government). The "CIBER de Enfermedades Raras" is an initiative from the ISCIII (Spain). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript
    • 

    corecore