169 research outputs found
Fitting the Continuum Component of A Composite SDSS Quasar Spectrum Using CMA-ES
Fitting the continuum component of a quasar spectrum in UV/optical band is
challenging due to contamination of numerous emission lines. Traditional
fitting algorithms such as the least-square fitting and the Levenberg-Marquardt
algorithm (LMA) are fast but are sensitive to initial values of fitting
parameters. They cannot guarantee to find global optimum solutions when the
object functions have multiple minima. In this work, we attempt to fit a
typical quasar spectrum using the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES). The spectrum is generated by composing a number of real
quasar spectra from the Sloan Digital Sky Survey (SDSS) quasar catalog data
release 3 (DR3) so it has a higher signal-to-noise ratio. The CMA-ES algorithm
is an evolutionary algorithm that is designed to find the global rather than
the local minima. The algorithm we implemented achieves an improved fitting
result than the LMA and unlike the LMA, it is independent of initial parameter
values. We are looking forward to implementing this algorithm to real quasar
spectra in UV/optical band.Comment: 23 pages, 8 figures, 5 table
The Effect of Variability on the Estimation of Quasar Black Hole Masses
We investigate the time-dependent variations of ultraviolet (UV) black hole
mass estimates of quasars in the Sloan Digital Sky Survey (SDSS). From SDSS
spectra of 615 high-redshift (1.69 < z < 4.75) quasars with spectra from two
epochs, we estimate black hole masses, using a single-epoch technique which
employs an additional, automated night-sky-line removal, and relies on UV
continuum luminosity and CIV (1549A) emission line dispersion. Mass estimates
show variations between epochs at about the 30% level for the sample as a
whole. We determine that, for our full sample, measurement error in the line
dispersion likely plays a larger role than the inherent variability, in terms
of contributing to variations in mass estimates between epochs. However, we use
the variations in quasars with r-band spectral signal-to-noise ratio greater
than 15 to estimate that the contribution to these variations from inherent
variability is roughly 20%. We conclude that these differences in black hole
mass estimates between epochs indicate variability is not a large contributer
to the current factor of two scatter between mass estimates derived from low-
and high-ionization emission lines.Comment: 76 pages, 15 figures, 2 (long) tables; Accepted for publication in
ApJ (November 10, 2007
Swift UVOT Observations of Core-Collapse SNe
We review recent UV observations of core-collapse supernovae (SNe) with the
Swift Ultra-violet/Optical Telescope (UVOT) during its first two years.
Rest-frame UV photometry is useful for differentiating SN types by exploiting
the UV-optical spectral shape and more subtle UV features. This is useful for
the real-time classification of local and high-redshift SNe using only
photometry. Two remarkable SNe Ib/c were observed with UVOT -- SN2006jc was a
UV bright SN Ib. Swift observations of GRB060218/SN2006aj began shortly after
the explosion and show a UV-bright peak followed by a UV-faint SN bump. UV
observations are also useful for constraining the temperature and ionization
structure of SNe IIP. Rest-frame UV observations of all types are important for
understanding the extinction, temperature, and bolometric luminosity of SNe and
to interpret the observations of high redshift SNe observed at optical
wavelengths.Comment: Figures are enlarged and colorized from print versio
Grist: Grid-based Data Mining for Astronomy
The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a work ow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the "hyperatlas" project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization
QSOs and Absorption Line Systems Surrounding the Hubble Deep Field
We have imaged a 45x45 sq. arcmin. area centered on the Hubble Deep Field
(HDF) in UBVRI passbands, down to respective limiting magnitudes of
approximately 21.5, 22.5, 22.2, 22.2, and 21.2. The principal goals of the
survey are to identify QSOs and to map structure traced by luminous galaxies
and QSO absorption line systems in a wide volume containing the HDF. We have
selected QSO candidates from color space, and identified 4 QSOs and 2 narrow
emission-line galaxies (NELGs) which have not previously been discovered,
bringing the total number of known QSOs in the area to 19. The bright z=1.305
QSO only 12 arcmin. away from the HDF raises the northern HDF to nearly the
same status as the HDF-S, which was selected to be proximate to a bright QSO.
About half of the QSO candidates remain for spectroscopic verification.
Absorption line spectroscopy has been obtained for 3 bright QSOs in the field,
using the Keck 10m, ARC 3.5m, and MDM 2.4m telescopes. Five heavy-element
absorption line systems have been identified, 4 of which overlap the
well-explored redshift range covered by deep galaxy redshift surveys towards
the HDF. The two absorbers at z=0.5565 and z=0.5621 occur at the same redshift
as the second most populated redshift peak in the galaxy distribution, but each
is more than 7Mpc/h (comoving, Omega_M=1, Omega_L=0) away from the HDF line of
sight in the transverse dimension. This supports more indirect evidence that
the galaxy redshift peaks are contained within large sheet-like structures
which traverse the HDF, and may be precursors to large-scale ``pancake''
structures seen in the present-day galaxy distribution.Comment: 36 pages, including 9 figures and 8 tables. Accepted for publication
in the Astronomical Journa
Spectral Decomposition of Broad-Line AGNs and Host Galaxies
Using an eigenspectrum decomposition technique, we separate the host galaxy
from the broad line active galactic nucleus (AGN) in a set of 4666 spectra from
the Sloan Digital Sky Survey (SDSS), from redshifts near zero up to about 0.75.
The decomposition technique uses separate sets of galaxy and quasar
eigenspectra to efficiently and reliably separate the AGN and host
spectroscopic components. The technique accurately reproduces the host galaxy
spectrum, its contributing fraction, and its classification. We show how the
accuracy of the decomposition depends upon S/N, host galaxy fraction, and the
galaxy class. Based on the eigencoefficients, the sample of SDSS broad-line AGN
host galaxies spans a wide range of spectral types, but the distribution
differs significantly from inactive galaxies. In particular, post-starburst
activity appears to be much more common among AGN host galaxies. The
luminosities of the hosts are much higher than expected for normal early-type
galaxies, and their colors become increasingly bluer than early-type galaxies
with increasing host luminosity. Most of the AGNs with detected hosts are
emitting at between 1% and 10% of their estimated Eddington luminosities, but
the sensitivity of the technique usually does not extend to the Eddington
limit. There are mild correlations among the AGN and host galaxy
eigencoefficients, possibly indicating a link between recent star formation and
the onset of AGN activity. The catalog of spectral reconstruction parameters is
available as an electronic table.Comment: 18 pages; accepted for publication in A
- …