131 research outputs found

    Strongly inhibited spontaneous emission of PbS quantum dots inside 3D silicon photonic crystals

    Get PDF
    We present an optical study of the spontaneous emission of lead sulfide (PbS) nanocrystal quantum dots in 3D photonic band gap crystals made from silicon. The nanocrystals are covalently bonded to polymer brush layers that are grafted from the Si-air interfaces inside the 3D nanostructure using surface-initiated atom transfer radical polymerization (SI-ATRP). The presence and position of the quantum dots was previously characterized by X-ray fluorescence tomography. We report both continuous wave emission spectra and time-resolved time-correlated single photon counting of the quantum dots. In time-resolved measurements, we observe that the total emission rate greatly increases when the quantum dots are transferred from suspension to the silicon nanostructures, likely due to quenching that is tentatively attributed to the presence of Cu-catalyst during synthesis. In this regime, continuous wave (cw) emission spectra are known to be proportional to the radiative rate, hence to the local density of states. In spectra normalized to those taken on flat Si, we observe a broad and deep stop band that we attribute to a 3D photonic band gap with a relative bandwidth up to 26%. The observed inhibition is 5 to 30 times enhanced, similar to previously reported band gap inhibitions, but for completely coincidental reasons. Our results are relevant to applications in photochemistry, sensing, photovoltaics, and to efficient miniature light sources

    Supramolecular materials: molecular packing of tetranitrotetrapropoxycalix[4]arene in highly stable films with second-order nonlinear optical properties

    Get PDF
    Highly stable films of tetranitrotetrapropoxycalix[4]arene (9) with second-order nonlinear optical (NLO) properties and a noncentrosymmetric structure were obtained by a novel crystallization process at 130-140 degrees C in a de electric field. The packing of 9 in these films was elucidated by a combination of X-ray diffraction, angle-dependent second- harmonic generation, and scanning force microscopy (SFM). The experimental results agree well with solid-state molecular dynamics calculations for these films. No crystalline phase was observed for nitrocalix[4]arene derivatives with longer or branched alkyl chains; this explains the limited NLO stability of films of these calixarenes. Scanning force microscopy o­n the aligned films of 9 showed two distinct surface lattice structures: a rectangular lattice (a = 9.3, b = 11.7 Angstrom) and a pseudohexagonal lattice (d approximate to 11.4 Angstrom). The combination of these data with the interlayer distance of 8.9 Angstrom (X-ray diffraction) allowed the packing of molecules of 9 in these structures to be fully elucidated at the molecular level

    Switching Transport through Nanopores with pH-Responsive Polymer Brushes for Controlled Ion Permeability

    Get PDF
    Several nanoporous platforms were functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes using surface-initiated atom transfer radical polymerization (SI-ATRP). The growth of the PMAA brush and its pH-responsive behavior from the nanoporous platforms were confirmed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The swelling behavior of the pH-responsive PMAA brushes grafted only from the nanopore walls was investigated by AFM in aqueous liquid environment with pH values of 4 and 8. AFM images displayed open nanopores at pH 4 and closed ones at pH 8, which rationalizes their use as gating platforms. Ion conductivity across the nanopores was investigated with current–voltage measurements at various pH values. Enhanced higher resistance across the nanopores was observed in a neutral polymer brush state (lower pH values) and lower resistance when the brush was charged (higher pH values). By adding a fluorescent dye in an environment of pH 4 or pH 8 at one side of the PMAA-brush functionalized nanopore array chips, diffusion across the nanopores was followed. These experiments displayed faster diffusion rates of the fluorescent molecules at pH 4 (PMAA neutral state, open pores) and slower diffusion at pH 8 (PMAA charged state, closed pores) showing the potential of this technology toward nanoscale valve applications

    Thin Polymer Brush Decouples Biomaterial's Micro-/Nano-Topology and Stem Cell Adhesion

    Get PDF
    Surface morphology and chemistry of polymers used as biomaterials, such as tissue engineering scaffolds, have a strong influence on the adhesion and behavior of human mesenchymal stem cells. Here we studied semicrystalline poly(Δ-caprolactone) (PCL) substrate scaffolds, which exhibited a variation of surface morphologies and roughness originating from different spherulitic superstructures. Different substrates were obtained by varying the parameters of the thermal processing, i.e. crystallization conditions. The cells attached to these polymer substrates adopted different morphologies responding to variations in spherulite density and size. In order to decouple substrate topology effects on the cells, sub-100 nm bio-adhesive polymer brush coatings of oligo(ethylene glycol) methacrylates were grafted from PCL and functionalized with fibronectin. On surfaces featuring different surface textures, dense and sub-100 nm thick brush coatings determined the response of cells, irrespective to the underlying topology. Thus, polymer brushes decouple substrate micro-/nano-topology and the adhesion of stem cells

    Ordered Polymeric Nanostructures at Surfaces

    No full text
    • 

    corecore